BOTTOM REFLECTION OF UNDERWATER EXPLOSION SHOCK WAVES, COMFUTER PROGRAM

By James R. Britt Hans G. Snay

30 JULY 1971

MOL

HAVAL ORDNANCE LABORATORY, WHITE CAK, SILVER SPRING, MARYLAND

NATIONAL TECHN!CAL INFORMATION SERVICE Springfield, Va. 22151

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D D C

DEPRIME
SEP 20 1971

MEGGIO ED

NOLTR 71-110

6	48

20910	20. REFORT SE	overall report is classified) CURITY CLASSIFICATION LASSIFIED
	25. GROUP	
r Explosi	on Shock	Maves,
		7b. NO. OF REFS
		6
		her numbers thet may be assigned
	-	
ion unlimi	ted.	
2. SPONSORING N	MILITARY ACTIV	VITY
Defe	nse Nucl	ear Agency
	NOLTR 7 b. OTHER REPORT this report) ion unlimit	Explosion Shock Total No. of Pages 100 + vi ORIGINATOR'S REPORT NUMB NOLTR 71-110 This report) Ton unlimited. Sponsoring military active Defense Nucle ORTRAN IV computes

which calculates the bottom reflection pressure history of underwater explosion shock waves. The reflection is computed for incide exponential pulses and plane, homogeneous, elastic bottoms using a linear spherical wave theory. Corrections for the non-linear variations of the peak pressure and time constant with distance are included. The program generates a plot tape for use on CALCOMP incremental plotters. Provisions are made for incorporation of the machine program that calculates the peak translational velocity of a ship target described in NOLTR 71-65. For comparison, an option is included for calculating the bottom reflection using the plane wave theory instead of that for spherical waves.

DD FORM 1473 (PAGE 1)

UNCLASSIFIED

S/N 0101-807-6801

Security Classification

UNCLASSIFIED

Security Classification	101						
14 KEY WORDS	LINK A LINK B			K. B	LINK C		
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT	
Underwiter Punications	ĺ	[.					
Underwater Explosions Nuclear Explosions	l	İ			1		
Nuclear Exbrosious		l	l				
Shock Waves		1					
Bottom Raflection of Shock Waves		İ					
Cagniard's Method	Į.			l			
Computer Code		[1		
				}			
		1		ŀ			
	1	1					
		i			1		
			-	ļ			
	1	ľ	,				
						1	
			1				
1	1		1				
	[•				
	i	i					
		İ					
					<u> </u>		
					1 1		
	į				!		
			ł				
		•					
					1 1	ı	
					1 1		
					1 1	111	
			1		1		
					,		
		_			1		
					j i		
				1			
					}		
(4))							
	200						

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED
Security Classification

NOLER 71-110

BOTTOM REFLECTION OF UNDERWATER EXPLOSION SHOCK WAVES, COMPUTER PROGRAM

by

James R. Britt Hans G. Snay

ABSTRACT: This report describes a FORTRAN IV computer code, BOTREF, which calculates the bottom reflection pressure history of underwater explosion shock waves. The reflection is computed for incident exponential pulses and plane, homogeneous, elastic bottoms using a linear spherical wave theory. Corrections for the non-linear variations of the peak pressure and time constant with distance are included. The program generates a plot tape for use on CALCOMP incremental plotters. Provisions are made for incorporation of the machine program that calculates the peak translational velocity of a ship target described in NOLTR 71-65. For comparison, an option is included for calculating the bottom reflection using the plane wave theory instead of that for spherical waves.

Explosions Research Department Naval Ordnance Laboratory White Oak, Silver Spring, Maryland F. 2-

NOLTR 71-110

30 July 1971

BOTTOM REFLECTION OF UNDERWATER EXPLOSION SHOCK WAVES, COMPUTER PROGRAM

This report is part of a continuing study of the interaction of the underwater explosion shock wave with the ocean bottom. The computer program described in this paper calculates the bottom reflection and generates plots of the pressure history. The calculations of this program are being used in the bottom reflection study to assess the potential danger to ships delivering nuclear underwater weapons posed by various bottom materials.

Thanks are due Dr. A. H. Van Tuyl (NOL, Code 331) for his help and valuable advice in the early phases of this work.

This study was supported by the Defense Nuclear Agency through Task DNA-NA (formerly DASA-NA) 002-20 P.106 (Energy Focussing and Reflection Effects).

ROBERT ENNIS Captain, USN Commander

C. J. ARONSON
By direction

CONTENTS

1.	INTR	ODUCTION	Page 1
2.	THEO	RY USED TO CALCULATE THE BOTTOM REFLECTION	4
	2.1	Theory of the Bottom Reflection of a Spherical Wave	4
		2.1.1 Critical Angles	6
		2.1.2 The Incident Pulse	7
		2.1.3 The Surface Reflection	8
		2.1.4 The Convolution Integral 2.1.5 The Impulse and Energy Flux	9
		2.1.5 The Impulse and Energy Flux	15
	2.2	The Cagniard-Rosenbaum Method for Calculating the Step Wave Response	16
		2.2.1 Non-Rigid Bottom Precursors 2.2.2 Rigid Bottom Precursor	17
		Case $c_2 > c_1 > c_4$ 2.2.3 Rigid Bottom Precursor	18
		$Case c_2 > c_4 > c_1$	19
		2.2.4 Step Wave Response at t = t	20
		2.2.5 Non-Rigid Bottom Main Wave Case c2 > c1	20
		2.2.6 Non-Rigid Bottom Main Wave,	
		Case c ₁ > c ₂	2 2
		2.2.7 Rigid Bottom Main Wave,	
		$Case c_2 > c_4 > c_1$	22
		2.2.8 Rigid Bottom Main Wave,	
		$Case c_2 > c_1 > c_4$	24
	2.3	The Complex Arithmetic Method for Calculating the Step Wave Response	26
	2.4	The Stonley Wave Propagation Velocity	28
	2.5	Theory of the Plane Wave Bottom Reflection	29
		2.5.1 The Plane Wave Reflection Coefficient and Phase Shift	29
		2.5.2 The Plane Wave Bottom Reflection	
		Pressure History	31

CONTENTS con't	Page	
3. THE BOTTOM REFLECTION COMPUTER CODE	34	
3.1 FORTRAN Symbols of the Main Program	36	
3.2 FORTRAN Symbols of SUBROUTINE STONL	. 46	
3.3 FORTRAN Symbols of SUBROUTINE STPWA	46	
3.4 FORTRAN Symbols of SUBROUTINE STPWB	47	
3.5 FORTRAN Symbols of FUNCTION ONE	48	
3.6 FORTRAN Symbols of FUNCTION ONEL	49	
3.7 FORTRAN Symbols in FUNCTION TWO	50	
3.8 FORTRAN Symbols in FUNCTION SEVEN	50	
3.9 FORTRAN Symbols in SUBROUTINE EXEL	50	
3.10 FORTRAN Symbols in SUBROUTINE EXEL	51	
3.11 FORTRAN Symbols in FUNCTION EXPO	51	
3.12 FORTRAN Symbols in FUNCTION FGI	51	
References	53	
APPENDIX AFORTRAN IV LISTING OF THE BOTTOM JAFLECTION PROGRAM BOTREF	A-1	
APPENDIX BSAMPLE PROGRAM OUTPUTS	B-1	
APPENDIX CTWO SPECIAL INPUT OPTIONS		

TABLES

Table	Title			
	Full Output for a Spherical Wave Bottom Reflection Short Output for a Spherical Wave Bottom Reflection Output for a Plane Wave Bottom Reflection	B-1 B-6 B-9		

ILLUSTRATIONS

Figure	Title	Page
1 2	Bottom Reflection Geometry Sample CALCOMP Plot of Pressure-time History	5 B-11

BOTTOM REFLECTION OF UNDERWATER EXPLOSION SHOCK WAVES, COMPUTER PROGRAM

1. INTRODUCTION

The bottom reflection of the underwater explosion shock wave is of interest to the Navy because of the danger it presents for self-damage to ships delivering nuclear ASW weapons. The theory presently being used to describe the reflection is a linear spherical wave theory originally developed by L. Cagniard (1) for the calculation of the reflection at an interface between two elastic solids. On the basis of Cagniard's theory, Rosenbaum (2) derived equations which describe the bottom reflection of underwater explosion shock waves. Britt (3) has greatly extended and generalized Rosenbaum's work. Britt's report should be consulted when using the computer program described here.

This report describes a computer program, BOTREF, written in FORTRAN IV for the NOL CDC 6400 computer. The code calculates the pressure history of the bottom reflection of incident exponential pulses reflected from plane, homogeneous, elastic bottoms using the spherical wave theory. Major portions of this program were written by the second author. The first author later brought this program into its present versatile form and used it successfully in practical applications.

The program has options for calculating the spherical wave reflection in two ways: (1) using real arithmetic and equations derived using contour integration (referred to as the Cagniard-Rosenbaum method) and (2) using the "complex arithmetic method". The first method is generally faster, but both usually take less than 30 seconds of central processor time on the CDC 6400 for calculating a complete pressure history. Also included in the program is an option for calculating the bottom reflection using the plane wave theory of Arons and Yennie (4). For both the plane wave and the spherical wave, the calculations include corrections for the non-linear changes of the shock wave peak pressure and time constant with the distance from the charge.

The code generates a CALCOMP plot tape of the total pressure history including the incident, bottom reflected, and acoustic surface reflected waves. The print out, in addition to the pressure history, includes information such as the incident angle, the plane wave reflection coefficient and phase shift, critical angles, arrival times, impulses, and energy flux.

The output of the bottom reflection program can be directly transferred to the PTV Program (NOLTR 71-65) which is then used as a subroutine. This program calculates the peak translational velocity (PTV) of a cylindrical target. This velocity can be used as an index for damage.

The equations used in the BOTREF code are described in Section 2 and references are made as to the location in the program where each equation is used. In Section 3 a detailed description is given of the program organization, inputs, outputs, and other important

symbols. The appendices contain a complete FORTRAN listing of the program, sample output, and a CALCOMP plot.

The code contains many comment cards so that most of the inputs and outputs and much of the organization is explained in the program listing.

Comments on Terminology. In the acoustic literature reflectors are called either solids or fluids, depending on whether they have a shear-strength or not. We prefer the terms non-rigid or rigid, because some solids, for instance, sand, have such a low shear strength that the theory for a non-rigid bottom yields sufficiently accurate results, in spite of the fact that the material is a solid. We hope that our terminology will lead to less misunderstandings than the conventional one or the previously used term "liquid bottom".

Rigidity should be understood as the resistance of a body to a change in shape at constant volume. It is equivalent to shear strength and is measured either by the Poisson Ratio or, as in this paper, by the propagation velocity of the shear wave. The shear velocity is zero for a non-rigid material. Compressibility is the resistance to a change in volume at constant shape and can be represented by the propagation velocity of a compression wave, i.e., the sound velocity.

The word rigid often has the connotation of a material having infinite rigidity. We use it in the sense of a material having a finite, non-vanishing rigidity.

2. THEORY USED TO CALCULATE THE BOTTOM REFLECTION

2.1 Theory of the Bottom Reflection of a Spherical Wave

The theory used in the computer program described in this report has been derived by Rosenbaum (2). Britt (3) has reviewed, explained, and greatly extended Rosenbaum's work. A semi-linear theory is used which describes all phenomena of interest with adequate accuracy. The notation used in this section is essentially that of Britt's report. The following exceptions are to be noted. We denote the excess pressure by p instead of P. Britt and Rosenbaum denote the time by τ ; we use t for the time and τ_m for Rosenbaum's reduced time (compare with Equation (2.2.2)). The program calculates the step wave response $_{n}P_{m} = _{1}P_{1}$ which corresponds to one reflection from the bottom. Multiple reflections between the surface and the bottom are not included. (Multiple reflections are of minor importance to underwater explosion phenomena that lead to damage processes. When a strong pressure wave is reflected at the water surface, most of the wave energy is left near the surface and does not propagate down into the water because of cavitation and spray formation.)

We denote $_1P_1$ by P_r , the bottom reflection slant range $_1R_1$ by R_r , the incident or direct wave range by R_i , and the surface reflection range by R_s . We also drop the subscripts n and m except in τ_m and K_m (Equation 2.2.18).

The geometry of the bottom reflection is shown in Figure 1. The water depth is H. The depths of the charge and gauge are d and d_g . The horizontal distance between charge and gauge is r. The incident angle of the bottom reflection is θ . From this figure

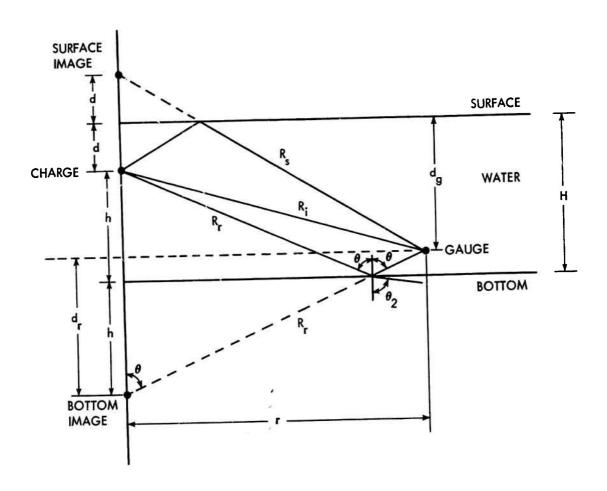


FIG. 1 BOTTOM REFLECTION GEOMETRY

we see that the slant ranges are given by the equations

$$R_{i} = \left[(d - d_{q})^{2} + r^{2} \right]^{1/2}$$
 (slant range of incident wave) (2.1.1)

$$R_r = \left[d_r^2 + r^2\right]^{1/2}$$
 (slant range of wave reflected at bottom) (2.1.2)

and

$$R_s = \left[(d_g + d)^2 + r^2 \right]^{1/2}$$
 (slant range of the wave reflected at the water surface), (2.1.3)

where $d_r = 2H - d_g - d$ is the depth of the "image" below the gauge. Further, we have

$$\cos \theta = d_r/R_r \tag{2.1.4}$$

and

$$\sin \theta = r/R_r. \tag{2.1.5}$$

In the water the sound velocity is denoted by c_1 , and the density by ρ_1 . Similarly, the sound velocity in the bottom material is c_2 , the shear wave propagation velocity is c_4 , and the density is ρ_2 . (Britt denoted the sound velocity and density of a rigid bottom by c_3 and ρ_3 .)

2.1.1 Critical Angles. For an incident angle θ , which is also the reflected angle, the refracted or transmitted ray into the bottom makes an angle θ_2 (see Figure 1) given by Snell's law

$$\sin \theta = \frac{C_1}{C_2} \sin \theta_2 \tag{2.1.6}$$

The angle θ_2 is that angle at which the pressure wave enters the bottom. Similarly, the angle θ_4 of the shear wave in the bottom is defined

$$\sin \theta = \frac{c_1}{c_4} \sin \theta_4. \tag{2.1.7}$$

When $c_2>c_1$ or $c_4>c_1$ the angles θ_2 and θ_4 become 90° at incident angles θ_{CT} and θ_{CTS} defined by

$$\sin^{6} cr = c_{1}/c_{2}$$
 (2.1.8)

$$\sin^{6} crs = c_{1}/c_{4}.$$
 (2.1.9)

 $^{\theta}$ cr is called the critical angle of the compression wave, and $^{\theta}$ crs is called the critical angle of the shear wave. These angles are important for calculating and interpreting the bottom reflection pressure history.

2.1.2 The Incident Pulse. The computer program assumes an exponential incident pulse p_i (t) given by

$$p_{i}(t) = p_{f}(R_{i}) \exp \left[-(t - R_{i}/c_{i})/G\right] \text{ for } t \ge R_{i}/c_{i}$$

$$p_{i}(t) = 0 \qquad \text{for } t < R_{i}/c_{i}, \qquad (2.1.10)$$

where G is the time constant (u sually denoted by 0) and $p_F = p_F(R_1)$ is the peak pressure of the incident shock wave. A reduced notation is used in the machine program utilizing the incident slant range R_1 (Equation 2.1.1) as the characteristic length. The reduced time is $\overline{t} = tc_1/R_1$. (It is denoted by T in the program). The reduced arrival time of the front of the direct wave is thus $\overline{t} = 1$. The incident pulse is then given by

$$p_{\underline{i}}(\overline{t}) = p_{F}(R_{\underline{i}}) \exp \left[-(\overline{t} - 1)/\overline{G}\right] \text{ for } \overline{t} \ge 1$$

$$p_{\underline{i}}(\overline{t}) = 0 \qquad \text{for } \overline{t} < 1, \qquad (2.1.11)$$

where $\overline{G} = c_1 G/R_1$ is the reduced time constant.

For the time constant G and the peak pressure p_F the relations for the actual underwater explosion shock waves (high amplitude waves) are used which when used together with the wave equation comprise the "semi-linear" theory. The shock wave parameters are obtained from the similitude equations

$$G = C_G W^{1/3} (W^{1/3}/R_i)^{n_G}$$
 (2.1.12)

$$p_F = C_p (W^{1/3}/R_i)^{n_p}$$
, (2.1.13)

where C_G , C_p , n_G , and n_p are constants for a given explosive. W is the charge weight in pounds, or, with appropriate constants, the yield in kilotons. G and p_F are calculated in the main program in Cards BOTR160-167.

Examples of the constants are

Explosive	c _p	n _p	c [©]	$n_{\mathbf{G}}$
TNT	21600	1.13	0.052	-0.23
HBX-1	23800	1.15	0.049	-0.29
Nuclear	4.291·10 ⁶	1.13	2.242	-0.22
(W = Yield in kt)	4.380·10 ⁶	1.13	2.274	-0.22

The values for nuclear explosions of the upper row are the most recent ones. Those in the lower row are generally quoted in the literature. The constants $\mathbf{C}_{\mathbf{p}}$ and $\mathbf{C}_{\mathbf{G}}$ are given in psi and milliseconds.

2.1.3 The Surface Reflection. The surface reflection $p_s(t)$ calculated from the simple acoustic equation is

$$p_s(t) = -p_F(R_s) \exp \left[-(t - R_s/c_1)/G_s \right]$$
 for $t \ge R_s/c_1$
 $p_s(t) = 0$ for $t < R_s/c_1$, (2.1.14)

where $G_{\mathbf{g}} = G(R_{\mathbf{g}})$. In reduced notation this becomes

$$p_{\mathbf{g}}(\overline{\mathbf{t}}) = -p_{\mathbf{F}}(R_{\mathbf{g}}) \exp \left[-(\overline{\mathbf{t}} - \overline{R}_{\mathbf{g}}) / \overline{G}_{\mathbf{g}} \right] \quad \text{for } \overline{\mathbf{t}} \ge \overline{R}_{\mathbf{g}}$$

$$p_{\mathbf{g}}(\overline{\mathbf{t}}) = 0 \quad \text{for } \overline{\mathbf{t}} < \overline{R}_{\mathbf{g}}, \quad (2.1.15)$$

where $\overline{G}_s = c_1 G_s/R_i$ and $\overline{R}_s = R_s/R_i$. These equations are coded in Cards BOTR218, 704, and 882.

The surface reflection is a tension wave and its pressure is to be subtracted from the pressure of the incident and the bottom reflected wave.

Equations (2.1.14 and 15) ignore cavitation which in sea water does not let pressures drop substantially below the vapor pressure. In the machine program this is taken into account by a test that makes sure that the total pressure does not fall below zero absolute (Cards BOTR713 and 884).

For a very oblique incidence the acoustic treatment of the surface reflection breaks down and must be replaced by the anomalous surface reflection described in NOLTR 70-31. The machine program described here does not include this mode of the surface reflection. This problem will be treated in another machine program that describes the shock wave propagation in shallow water.

2.1.4 The Convolution Integral. The theory of the bottom reflection yields the reflected wave for an incident step wave. This step wave response, denoted by $P_r(t)$, is the crucial point of the analysis and will be discussed in detail later. It has the dimension of (Length)⁻¹. The pressure history of the bottom reflected wave for an exponential incident wave $P_r(t)$ is obtained from the convolution integral:

$$p_{r}(t) = p_{r}^{t}(R_{r}) \left[P_{r}(t) - 1/G_{r} \int_{\delta}^{t} exp \left[-(t - z)/G_{r} \right] P_{r}(z) dz \right]$$

$$for \ t \ge \delta$$

$$p_{r}(t) = 0$$

$$for \ t < \delta.$$
(2.1.16)

This equation is explained in Appendix D of Britt's report. The scale factor p_F^* and the time constant G_F are given by

$$\mathbf{p_F^*} = \mathbf{R_T} \mathbf{p_F}(\mathbf{R_T}) \tag{2.1.17}$$

$$G_{r} = G(R_{r}),$$
 (2.1.18)

where R_r is the plant range of the reflected wave, Equation (2.1.2). The factor R_r of the reduced pressure scale factor p_r^s stems from the definition of the reduced step wave response $P_r(t)$ which includes R_r^{-1} as a factor.

The reduced form of the convolution integral is readily obtained by introduction of $\overline{t}=tc_1/R_i$, $\overline{\delta}$, \overline{z} , and $\overline{G}_r=c_1G_r/R_i$.

The symbol δ in Equation (2,1.16) denotes the arrival time of the bottom reflection.

For subcritical incidence, $\theta < \theta_{cr}$, we have

$$\delta = t_C = R_r/c_1$$
 (2.1.19)

and the reduced form is

$$\tilde{\delta} = c_1 \, \delta / R_i = R_r / R_i$$
 (2.1.20)

In this case δ is the arrival timet of the peak of the reflected wave.

For supercritical incidence, $\theta > \theta_{\rm cr}$, the precursor of the bottom reflection arrives before t = t_c, namely at

$$\delta = r/c_2 + d_r(c_1^{-2} - c_2^{-2})^{1/2}$$
 (2.1.21)

or in the dimensionless form

$$\bar{\delta} = rc_1/c_2R_i + d_r \left[1 - (c_1/c_2)^2\right]^{1/2}/R_i.$$
 (2.1.22)

The convolution integral is calculated in the BOTREF program Cards BOTR556, 589, 597, 635, 643, and 673 using Simpson's rule for small intervals with three equally spaced points.

For an exponential incident pulse the integral need not be recalculated from $t = \delta$ for each time step because of $\exp(t + \Delta t) = \exp(t) \exp(\Delta t).$

The algorithm used to calculate the integral in Equation (2.1.16), which we call F_T , is as follows:

$$F_{I}(t) = \exp(-2\Delta t/G_{r})F_{I}(t - 2\Delta t) + \{ [P_{r}(t - 2\Delta t) \exp(-\Delta t/G_{r}) + 4P_{r}(t - \Delta t)] \exp(-\Delta t/G_{r}) + P_{r}(t) \} \Delta t/3 . \qquad (2.1.23)$$

This relation permits a convenient step-by-step quadrature of the integral using its value for a time $2\Delta t$ earlier. The expression is readily transformed into a reduced form by the introduction of \tilde{t} , $\Delta \tilde{t}$, and \tilde{G}_{r} . F_{I} has the dimension time/length.

For supercritical incidence $P_r(t)$ has a logarithmic singularity at $t=t_c$. Since $P_r(t)$ is a rapidly changing function of t near t_c , a smaller time increment, $\Delta t^* \approx \Delta t/8$, is used in the code for the interval $(t_c-\alpha\Delta t,\ t_c+4\Delta t)$. The code calculates α so that there are enough points in the bottom reflection pressure-time history (before and after the time increment change) to execute the impulse

and energy flux integrations. The usual range is $2.1 < \alpha < 6.1$. Because these integrations are performed with Simpson's rule on equally spaced points, each integration step is completed on an odd-numbered point.

Further, in the time range t_c - $2\Delta t^* < t < t_c + 2\Delta t^*$ we change the integration variable in the convolution integral F_T to

$$v^{2} = t_{C}^{2} - z^{2}$$
 for $z \le t_{C}$
 $u^{2} = z^{2} - t_{C}^{2}$ for $z \ge t_{C}$.

The step wave response $P_r(t)$ behaves near the singularity like

$$\lim_{t\to t_{c}} P_{r}(t) = C \ln(|t_{c}-t|).$$

The change of variables v and u transforms the last two factors of Equation (2.1.16) as follows:

$$P_r(z) dz = -\frac{v}{z} P_r(z) dv$$
 $z \le t_c$
= $\frac{u}{z} P_r(z) du$ $z \ge t_c$.

Then we obtain

$$\lim_{z \to t_{c}} - \frac{v}{z} P_{r}(z) = - C \lim_{z \to t_{c}} \frac{(t_{c}^{2} - z^{2})^{1/2}}{z} \ln(t_{c} - z) = 0 \qquad z \le t_{c}$$

$$\lim_{z \to t_{c}} \frac{u}{z} P_{r}(z) = C \lim_{z \to t_{c}} \frac{(z^{2} - t_{c}^{2})^{1/2}}{z} \ln(z - t_{c}) = 0 \qquad z \ge t_{c}.$$

This means the integrands vanish at the singularity of P_r , and thus makes numerical integration possible.

Equation (2.1.24) below illustrates the variable change.

$$p_{r}(t) = p_{r}^{t} \left[P_{r}(t) - \frac{1}{G_{r}^{t}} \int_{\delta}^{t} \exp\left[-(t - z)/G_{r}\right] P_{r}(z) dz \right]$$

$$- \int_{c}^{v} \exp\left[-(t - z)/G_{r}\right] P_{r}(z) \frac{v}{z} dv$$

$$v (t_{c}-2\Delta t')$$

$$u (t_{c}+2\Delta t')$$

$$+ \int_{u(t_{c})}^{t} \exp\left[-(t - z)/G_{r}\right] P_{r}(z) \frac{u}{z} du$$

$$t$$

$$+ \int_{c}^{t} \exp\left[-(t - z)/G_{r}\right] P_{r}(z) dz \left.\right\} \left.\right]. \qquad (2.1.24)$$

Up to time t_c - 2 Δt ' and after time t_c + 2 Δt ' the integration variable is z and the algorithm of Equation (2.1.23) is used to perform the quadrature. Around the singularity Simpson's rule on equally spaced intervals of v and u, instead of z or time, is used for the integration.

Using the algorithms described below, $F_{\rm I}(t)$ and $p_{\rm r}(t)$ are evaluated in two steps before and after the singularity. When $t_{\rm C}$ -2 Δt^{*} < $t \le t_{\rm C}$, the following variables are used:

$$t_1 = t_c - 2\Delta t'$$
 (2.1.25)

$$v_1 = v(t_1) = (t_c^2 - t_1^2)^{1/2}$$
 (2.1.26)

$$t_2 = [t_C^2 - (3v_1/4)^2]^{1/2}$$
 (2.1.27)

$$t_3 = [t_C^2 - (v_1/2)^2]^{1/2}$$
 (2.1.28)

$$t_4 = [t_C^2 - (v_1/4)^2]^{1/2}$$
 (2.1.29)

The fifth time used here is t_c . However, $P_r(t_c)$ does not appear in the equations for F_I because the transformed integrand vanishes. The value of F_I at $t=t_3$ is obtained from

$$F_{I}(t_{3}) = F_{I}(t_{1}) \exp \left[-(t_{3}-t_{1})/G_{r}\right] + \left\{P_{r}(t_{1}) \exp[-(t_{3}-t_{1})/G_{r}]v_{1}/t_{1}\right\} + 3P_{r}(t_{2}) \exp[-(t_{3}-t_{2})/G_{r}]v_{1}/t_{2} + P_{r}(t_{3})v_{1}/2t_{3} v_{1}/12 .$$

$$(2.1.30)$$

This equation is coded in reduced notation in Card BOTR589. For the next step $F_{\rm I}({\rm t_C})$ is calculated using

$$F_{I}(t_{c}) = F_{I}(t_{3}) \exp[-(t_{c}-t_{3})/G_{r}] + \{P_{r}(t_{3}) \exp[-(t_{c}-t_{3})/G_{r}] \sqrt{2t_{3}} + P_{r}(t_{4}) \exp[-(t_{c}-t_{4})/G_{r}] \sqrt{2t_{4}} v_{1}/12 . \quad (2.1.31)$$

This equation is coded in reduced notation (Card BOTR597).

Similarly, after the singularity we define the following variables:

$$t_6 = t_c + 2\Delta t'$$
 (2.1.32)

$$u_1 = u(t_5) = (t_5^2 - t_C^2)^{1/2}$$
 (2.1.33)

$$t_2 = [t_C^2 + (u_1/4)^2]^{1/2}$$
 (2.1.34)

$$t_3 = [t_C^2 + (u_1/2)^2]^{1/2}$$
 (2.1.35)

$$t_4 = [t_C^2 + (3u_1/4)^2]^{1/2}$$
 (2.1.36)

Here t_1 is the time of the singularity t_c , but $P_r(t_c)$ is not needed

since the transformed integrand vanishes. The value of $\mathbf{F}_{\underline{\mathbf{I}}}(t_0)$ is then given by

$$F_{I}(t_{a}) = F_{I}(t_{c}) \exp[-(t_{a}-t_{c})/G_{r}] + \{P_{r}(t_{2}) u_{1} \exp[-(t_{a}-t_{2})/G_{r}]/t_{2} + P_{r}(t_{a}) u_{1}/2t_{3}\}u_{1}/12.$$
(2.1.37)

This equation is converted to reduced notation and coded in Card BOTR635. Then the last step using the special integration variables is

$$F_{I}(t_{6}) = F_{I}(t_{3}) \exp[-(t_{6}-t_{3})/G_{r}] + \{P_{r}(t_{3})u_{1} \exp[-(t_{6}-t_{3})/G_{r}]/2t_{3} + 3P_{r}(t_{4})u_{1} \exp[-(t_{6}-t_{4})/G_{r}]/t_{4} + P_{r}(t_{6})u_{1}/t_{6}\}u_{1}/12.$$
(2.1.38)

This equation in reduced form is coded in Card BOTR643.

2.1.5 The Impulse and Energy Flux. The impulse I and energy flux E_F are calculated in the main program Cards BOTR717-766. These calculations are made only if the spherical wave bottom reflection is used. The impulse in psi-sec is evaluated from the equation

$$I = \int_{t_0}^{t} p(t) dt,$$

where $p(t) = p_i(t) + p_r(t) + p_s(t)$ is the total pressure of the incident, bottom reflected, and surface reflected waves and to is the time of the beginning of the pressure pulse p(t).

The energy flux $E_{\mathbf{p}}$ in in-psi is found from the equation $E_{\mathbf{p}} = \left\{ \int_{\mathbf{t}_{0}} |\mathbf{p}| \mathbf{p} \ d\mathbf{t} \right\} / (2.3066 \ \rho_{2} c_{1}) ,$

where 2.3066 is a conversion factor necessary for $E_{\rm F}$ to be in units in-psi when p is in psi, time in seconds, ρ_1 in gm/cm³, and c_1 in ft/sec.

Away from the singularity of $p_r(t)$ of $t=t_c$ and for subcritical bottom reflections the integrals are determined using Simpson's rule on equally spaced points as a function of time. Near the singularity the change of integration variables is made to v and u as for the convolution integral. This change of variables is made in Cards BOTR738-755.

Also calculated in the same section of the program is the "positive impulse" which is simply the impulse of the positive part of the total pressure p(t). If the full output option is used (see the input Z5 in Section 3.1 and the sample outputs of Appendix B), the magnitudes reduced impulse $I/W^{1/3}$, reduced positive impulse, and reduced energy flux $E_p/W^{1/2}$ are calculated in Cards BOTR793-797.

2.2 The Cagniard-Rosenbaum Method for Calculating the Step Wave Response

In this section the Cagniard-Rosenbaum equations are listed, and forms of these equations similar to the FORTRAN notation are given. This method is faster than the complex arithmetic method which will be discussed in Section 2.3, but it has the disadvantage that separate equations are required for the precursor and the main wave and for each type of bottom (determined by the ordering

of c_1 , c_2 , and c_4). However, in the coding we were able to take advantage of certain common factors and terms and hence reduce the number of statements that would otherwise be required.

2.2.1 Non-Rigid Bottom Precursors. A fast non-rigid bottom $(c_2 > c_1)$ for which $\theta > \theta_{CT}$ has a step wave response at times $\delta \leqslant t < t_{C}$ expressed by the following equation (Britt (2-1.10)):

$$P_{r}(t) = \frac{b(\sigma - M)}{R_{r}} \int_{-1}^{1} \frac{\omega(\sigma + \omega)^{1/2} (1 - \sin \pi \psi/2) d\psi}{[(1 - b^{2}) \omega^{2} + \sigma^{2} b^{2}] (\omega - N)^{1/2}}, \quad (2.2.1)$$

where $\omega=(\sigma+M)/2+\left[(\sigma-M)/2\right]\sin\pi\psi/2$, (2.2.2) $b=\rho_1/\rho_2$, $\tau_m=t/R_r$, $\sigma=(c_1^{-2}-c_2^{-2})^{1/2}$, $M=\tau_m\cos\theta+(c_1^{-2}-\tau_m^2)^{1/2}\sin\theta$, $N=\tau_m\cos\theta-(c_1^{-2}-\tau_m^2)^{1/2}\sin\theta$, $\sin\theta=r/R_r$, and $\cos\theta=d_r/R_r$. In the program the integration variable $x=\pi\psi/2$ is used. We also set $w=c_1\omega$. Then after rearranging, Equation (2.2.1) can be put into the form which is coded

$$R_{i}P_{r}(t) = \frac{2\sqrt{2} b R_{i}}{\pi R_{r}} \int_{-\pi/2}^{\pi/2} \frac{F_{x} w dx}{w^{2} + b^{2}(c_{1}^{2}\sigma^{2} - w^{2})}, \qquad (2.2.3)$$

where

$$F_{x} = (1 - \sin x) \{ \left[(c_{1} \sigma + w) (c_{1} \sigma - c_{1} M) \right] / \left[1 + \sin x + 4 (1 - c_{1}^{2} \tau_{m}^{2})^{1/2} \sin \theta / (c_{1} \sigma - c_{1} M) \right] \}^{1/2}.$$
(2.2.4)

 $= (1 - \sin x) \{ [(\cos \alpha + w) P(1)] / [1 + \sin x + P(2)] \}^{1/2},$ with $\cos \alpha = c_1 \sigma = [1 - (c_1/c_2)^2]^{1/2},$ $P(1) = \cos \alpha - c_1 M_A$

 $P(2) = 4(1 - c_1^2 \tau_m^2)^{1/2} \sin \theta / P(1)$.

The variables $\cos \alpha$, P(1), and P(2) are calculated in Cards BOTR238, STPA022, and 23.

The integrand above is evaluated in FUNCTION ONE. The variable F_X is coded in Card ONE023, and the value of the integrand is ONE in Card ONE055. The factor outside the integral is calculated in Card STPA025. The integration for this and all other precursors is controlled by SUBROUTINE STPWA which uses the Gaussian quadrature of FUNCTION FGI to evaluate the integral. The value of $R_i P_r(t)$, called STPW in Card STPA027, is returned to the main program BOTREF where the convolution integral is executed.

2.2.2 Rigid Bottom Precursor, Case $c_2 > c_1 > c_4$. The precursor integrands for a rigid bottom are also evaluated in FUNCTION ONE. For the case $c_2 > c_1 > c_4$ (slow shear) the following equation (Britt (4-1.6)) is used

$$P_{r}(t) = \frac{b(\sigma-M)}{4R_{r}c_{4}^{4}} \int \frac{(\sigma+\omega)^{1/2}A(1-\sin \pi\psi/2) d\psi}{(\omega-N)^{1/2}[A^{2}+(B+C)^{2}]}, \qquad (2.2.5)$$

where

$$A = \omega (c_4^{-2}/2 - c_1^{-2} + \omega^2)^2$$
 (2.2.6)

$$B = \omega(c_1^{-2} - \omega^2) (\sigma^2 - \omega^2)^{1/2} \left[\omega^2 + c_4^{-2} - c_1^{-2} \right]^{1/2}$$
 (2.2.7)

$$C = bc_4^{-4} (\sigma^2 - \omega^2)^{1/2} / 4. \qquad (2.2.8)$$

In a manner similar to the non-rigid bottom, Equation (2.2.5) can be rearranged to obtain the program form

$$R_{i}P_{r}(t) = \frac{2\sqrt{2} b R_{i}}{mR_{r}} \int_{-\pi/2}^{\pi/2} \frac{F_{x}A_{x} dx}{[A_{x}^{2} + (B_{x} + C_{x})^{2}]} , \qquad (2.2.9)$$

where $w = c_1 \omega$, $\cos \alpha = c_1 \sigma$, and

$$A_{X} = 4c_{1} c_{4}^{4} A = w[1-2(c_{4}/c_{1})^{8} (1-w^{2})]^{8}, \qquad (2.2.10)$$

$$B_{X} = 4c_{1} c_{4}^{4} B = 4w(c_{4}/c_{1})^{2} (1-w^{2}) [(cos^{2}\alpha - w^{2})]^{1/8}, \qquad (2.2.11)$$

$$C_{X} = 4c_{1} c_{4}^{4} C = b(cos^{8}\alpha - w^{2})^{1/8}. \qquad (2.2.12)$$

As in the previous case F_X and the factor outside the integral are calculated in Cards ONE023, and STPA025. The variables A_X , B_X , and C_X are coded in Cards ONE043, 044, and 050. The value of the integrand is ONE in Card ONE051, and as before SUBROUTINE STPWA controls the integration.

2.2.3 Rigid Lottom Precursor, Case, $c_2 > c_4 > c_1$. The precursor for $c_2 > c_4 > c_1$ (fast shear) is based on the following equation (Britt (4-2.8))

$$P_{r}(t) = \frac{b(\sigma-M)}{4R_{r}c_{4}^{4}} \int_{\psi_{1}}^{1} \frac{(\sigma+\omega)^{1/2}A(1-\sin \pi\psi/2) d\psi}{(\omega-N)^{1/2} \left[A^{2} + (B+C)^{2}\right]} + \frac{b(\sigma-M)}{4R_{r}c_{4}^{4}} \int_{(\omega-N)^{1/2}}^{\psi_{1}} \frac{(\sigma+\omega)^{1/2}(A-B)(1-\sin \pi\psi/2) d\psi}{(\omega-N)^{1/2} \left[(A-B)^{2} + C^{2}\right]} + \frac{2}{\pi} \arcsin \left[\frac{2(c_{1}^{-2}-c_{4}^{-2})^{1/2}-\sigma-M}{\sigma-M}\right].$$
(2.2.13)

where

(In Britt's paper the magnitude B in the second integral is denoted by B_2 , a precaution unnecessary if the definition Equation (2.2.7) is used.) Equation (2.2.13) can then be written in the form used in the program

$$R_i P_r(t) = \frac{2\sqrt{2} b R_i}{m_{r}} \int_{-\pi/2}^{\pi/2} F_x F_k dx,$$
 (2.2.14)

where

$$F_{k} = (A_{x} - B_{x}) / [(A_{x} - B_{x})^{2} + C_{x}^{2}] \text{ for } w^{2} + c_{4}^{-2} - c_{1}^{-2} < 0 \text{ (2.2.15)}$$

$$F_{k} = A_{x} / [A_{x}^{2} + (B_{x} + C_{x})^{2}] \text{ for } w^{2} + c_{4}^{-2} - c_{1}^{-2} \ge 0.(2.2.16)$$

The variables A_X , B_X , and C_X are defined in Equations (2.2.10), (2.2.11), and (2.2.12). In the first case the integrand is coded in Card ONE047 and the second case in Card ONE051.

- 2.2.4 Step Wave Response at $t = t_C$. At the peak of the bottom reflection at $t = t_C = R_r/c_1$, the step wave response $P_r(t_C)$ is calculated in the main program BOTREF. For supercritical incidence, $\theta > \theta_{Cr}$, $P_r = t_{Cr}$ where the sign depends on the phase shift ϕ explained in Section 2.5.1. The treatment of this case is discussed in Section 2.1.4. For subcritical incidence, $\theta < \theta_{Cr}$, P_r remains finite and $P_r = K/R_r$ where K is the plane wave reflection coefficient of Section 2.5.1.
- 2.2.5 Non-Rigid Bottom Main Wave, Case $c_2 > c_1$. A fast non-rigid bottom ($c_2 > c_1$) has a step wave response at times t > t_c given by the equation (Britt (2-2.10))

$$P_{r}(t) = \frac{1}{R_{r}} \frac{1-b}{1+b} + \frac{2b}{mR_{r}} \int_{0}^{\sigma} \frac{\omega(\sigma^{2} - \omega^{2})^{1/2}}{\left[(1-b^{2})\omega^{2} + \sigma^{2}b^{2}\right]} \left\{ \left[(\omega - K_{m})^{2} + L\right]^{-1/2} - \left[(\omega + K_{m})^{2} + L\right]^{-1/2} \right\} d\omega,$$
(2.2.17)

where

$$K_{\rm m} = \tau_{\rm m} \cos \theta \tag{2.2.18}$$

$$L = (\tau_{m}^{2} - c_{1}^{-2}) \sin^{2}\theta. \qquad (2.2.19)$$

The subscript m has been kept to distinguish it from the reflection coefficient K.

In the code the integration variable is $w = c_1 w$, and the form of the equation is similar to that for the precursor:

$$R_{i}P_{r}(t) = \frac{(1-b)R_{i}}{(1+b)R_{r}} + \frac{2bR_{i}}{\pi R_{r}} \int_{0}^{C_{1} \sigma} \frac{F_{x} w dw}{w^{2}+b^{2}(c_{1}^{3}\sigma^{2} - w^{2})}, \qquad (2.2.20)$$

where F_{x} is now

$$F_{X} = \left[\frac{c_{1}^{2}\sigma^{2} - w^{2}}{c_{1}^{2}L + (w - c_{1}K_{m})^{2}}\right]^{1/2} - \left[\frac{c_{1}^{2}\sigma^{2} - w^{2}}{c_{1}^{2}L + (w + c_{1}K_{m})^{2}}\right]^{1/2}$$
(2.2.21)

$$= \left[\frac{\cos^{2}\alpha - w^{2}}{P(8) + (w-P(7))^{2}}\right]^{1/2} - \left[\frac{\cos^{2}\alpha - w^{2}}{P(8) + (w+P(7))^{2}}\right]^{1/2}$$

with $\cos \alpha = c_1 \sigma = [1 - (c_1/c_2)^2]^{1/8}$.

The abbreviations P(7) and P(8) are listed in Cards STPB026 and 27. The function F_X above is calculated in Card ONE032, and the integrand is ONE in Card ONE055. The factor outside the integral is evaluated in Card STPB032. The first term on the right hand side of Equation (2.2.20) is computed in Card STPB038. The integration for this and all other main wave responses is controlled by SUBROUTINE STPWB. The value of $R_i P_r(t)$ is calculated in Card STPB047.

2.2.6 Non-Riqid Bottom Main Wave, Case $c_1 > c_2$. The step wave response for a slow non-rigid bottom, one with $c_1 > c_2$, is expressed in the equation (Britt (2-3.14))

$$P_{r}(t) = \frac{1}{R_{r}} \frac{1-b}{1+b} - \frac{2\sqrt{2}b}{\pi R_{r}} \int_{0}^{\bar{\sigma}} \frac{\bar{w}(\bar{\sigma}^{2} - \bar{w}^{2})^{1/2}}{(1-b^{2})\bar{w}^{2} + \bar{\sigma}^{2}b^{2}} \frac{[(\bar{w}^{2} + D)^{2} + E]^{1/2} + (\bar{w}^{2} - F)}{(\bar{w}^{2} + D)^{2} + E}^{1/2} d\bar{w}^{2}$$

(2.2.22)

where

$$\bar{\sigma} = (c_0^{-2} - c_1^{-2})^{1/2}$$
 (2.2.23)

$$D = \tau_m^2 \cos 2\theta + c_1^{-2} \sin^2\theta, \qquad (2.2.24)$$

$$E = 4(\sin^2\theta \cos^2\theta) \tau_m^2(\tau_m^2 - c_1^{-2}),$$
 (2.2.25)

and

$$F = \tau_m^2 - c_1^{-2} \sin^2 \theta . ag{2.2.26}$$

The form used in the program is

$$R_i P_r(t) = \frac{R_i}{R_r} \frac{1-b}{1+b} - \frac{2\sqrt{2 b R_i}}{\pi R_r} \int_0^{\infty} \overline{F}_A \overline{F}_B dx$$
, (2.2.27)

where $x = c_1 \overline{w}$

$$\bar{F}_{h} = x(c_{1}^{2}\bar{c}^{2} - x^{2})^{1/2}/[(1-b^{2})x^{3} + b^{2}c_{1}^{2}\bar{c}^{2}]$$
 (2.2.28)

$$\overline{F}_{B} = c_{1}^{-1} \left\{ \frac{\left[(\overline{w}^{2} + D)^{2} + E \right]^{1/2} + (\overline{w}^{2} - F)}{(\overline{w}^{2} + D)^{2} + E} \right\}^{1/2} . \quad (2.2.29)$$

The integrand is evaluated in FUNCTION TWO Card TWO017, \overline{F}_A is coded in Card TW0013, and \overline{F}_B is coded in Cards TW0014 and 015. The terms corresponding to D, E, and F are denoted by P(11), P(12), and P(13) and are evaluated in Cards STPB029-31.

2.2.7 Rigid Bottom Main Wave, Case $c_2 > c_4 > c_1$. The rigid bottom main wave response for the case $c_2 > c_4 > c_1$ (fast shear) is expressed in Britt's equations (4-4.3), (4-3.14), and (4-3.15)

which are as follows:

$$P_{r}(t) = \frac{1}{R_{r}} + \Delta \qquad (2.2.30)$$

$$+ \frac{b}{2\pi R_{r}c_{s}^{4}} \int_{0}^{\sigma_{2}} \frac{(\sigma^{2} - \omega^{2})^{1/2} (A-B)}{\left[(A-B)^{2} + C^{2}\right]} \left\{ \frac{1}{\left[(\omega - K_{m})^{2} + L\right]^{1/2}} \frac{1}{\left[(\omega + K_{m})^{2} + L\right]^{1/2}} \right\} d\omega$$

$$+ \frac{b}{2\pi R_{r}c_{s}^{4}} \int_{\sigma_{2}}^{\sigma} \frac{A(\sigma^{2} - \omega^{2})^{1/2}}{\left[A^{2} + (B+C)^{2}\right]} \left\{ \frac{1}{\left[(\omega - K_{m})^{2} + L\right]^{1/2}} \frac{1}{\left[(\omega + K_{m})^{2} + L\right]^{1/2}} \right\} d\omega$$
where
$$\sigma_{2} = (|c_{4}|^{-2} - c_{1}^{-2}|)^{1/2} \quad \text{and}$$

$$\Delta = \frac{\sqrt{2} k}{R_{r}g_{1}} \left\{ \frac{(a^{2} + f)^{1/2} - a}{a^{2} + f} \right\}^{1/2} r \qquad (2.2.31)$$

with

$$\Gamma = \left\{ g_1 \left[\left(\frac{c_4^{-2}}{2} - k^2 \right)^2 - k^2 g_3 g_4 \right] - \frac{bg_3}{4c_4^4} \right\} / \left\{ \frac{k}{g_1} \left[\left(\frac{c_4^{-2}}{2} - k^2 \right)^2 - k^2 g_3 g_4 \right] - g_1 k \left[4 \left(\frac{c_4^{-2}}{2} - k^2 \right) + 2g_3 g_4 + k^2 \left(\frac{g_4}{g_3} + \frac{g_3}{g_4} \right) \right] + \frac{bk}{4g_3 c_4} \right\}.$$

Here, c_{st} is the propagation velocity of the Stonley wave, $k = 1/c_{st}$, $g_1 = (k^2 - c_1^{-2})^{1/2}$, $g_3 = (k^2 - c_2^{-2})^{1/2}$, $g_4 = (k^2 - c_4^{-2})^{1/2}$, $a = \tau_m^2 - (k^2 - c_1^{-2}\cos^2\theta)$, and $f = 4\tau_m^2g_1^2\cos^2\theta$.

The Stonley wave propagation velocity $c_{\rm st}$ is calculated in SUBROUTINE STONL. The equation for $c_{\rm st}$ used in the program is described in Section 2.4.

The above equation is coded in the form

$$R_i P_r(t) = \frac{R_i}{R_r} + R_i \Delta + \frac{2bR_i}{m_{r}} \int_0^{c_1} F_x F_k dw$$
 (2.2.32)

 $\mathbf{F_x}$ and $\mathbf{F_k}$ have been defined in Equations (2.2.21), (2.2.15), and (2.2.16).

The first two terms of Equation (2.2.32) are calculated in Cards STPB056-71 for all solid bottom main waves, and the result is stored in the variable TERML. The integrand is determined in FUNCTION ONE in Cards ONE047 and 051 in the same way as for the precursor. However, the function $F_{\rm x}$ and the factor in front of the integral are here calculated in Cards ONE032 and STPB032 as they were for a fast fluid bottom main wave.

2.2.8 Rigid Bottom Main Wave, Case $c_2 > c_1 > c_4$. The main wave response for the rigid bottom case $c_2 > c_1 > c_4$ (slow shear) is given by the following equation (Britt (4-3.13))

$$P_{r}(t) = \frac{1}{R_{r}} + \Delta$$

$$+ \frac{b}{2\pi R_{r}c_{4}} \int_{0}^{\sigma} \frac{A(\sigma^{2} - \omega^{2})^{1/3}}{A^{2} + (B+C)^{2}} \left\{ \frac{1}{[(\omega - K_{m})^{2} + L]^{1/2}} \frac{1}{[(\omega + K_{m})^{2} + L]^{1/2}} \right\} d\omega$$

$$- \frac{\sqrt{2} b}{2\pi R_{r}c_{4}} \int_{0}^{\sigma_{2}} \frac{(\overline{\omega}^{2} + \sigma^{2})^{1/2} \overline{B}}{(\overline{A} + \overline{C})^{2} + \overline{B}^{2}} \left\{ \frac{[(\overline{\omega}^{2} + D)^{2} + E]^{1/2} + (\overline{\omega}^{2} - F)}{(\overline{\omega}^{2} + D)^{2} + E} \right\}^{1/2} d\overline{\omega}$$

(2.2.33)

where
$$\bar{A} = \bar{w} \left[c_i^{-2}/2 - c_1^{-2} - \bar{w}^2 \right]^2$$
, (2.2.34)

$$\bar{B} = \bar{w} (c_1^{-2} + \bar{w}^2) (\sigma^2 + \bar{w}^2)^{1/2} (\sigma_2^2 - \bar{w}^2)^{1/2}, \qquad (2.2.35)$$

$$C = \frac{b}{4c_4} (\sigma^2 + \overline{w}^2)^{1/2}. \tag{2.2.36}$$

The above equation is coded in the form

$$R_{i}P_{r}(t) = \frac{R_{i}}{R_{r}} + R_{i}\Delta + \frac{2bR_{i}}{mR_{r}} \int_{0}^{c_{1}\sigma} F_{x}F_{k} dw - (\frac{c_{1}}{c_{4}})^{4} \sqrt{\frac{2}{4}} \int_{0}^{c_{1}\sigma_{z}} F_{x}F_{k} dx$$
 (2.2.37)

where $x = c_1 \overline{w}$, F_x and F_k are defined in Equations (2.2.21), (2.2.15), and (2.2.16),

$$\bar{F}_{A} = \frac{(\bar{w}^{2} + \sigma^{2})^{1/2} \bar{B}}{c_{1}^{4} [(\bar{A} + \bar{C})^{2} + \bar{B}^{2}]} = \frac{(x^{2} + \cos^{2}\alpha)^{1/2} \bar{B}_{x}}{(\bar{A}_{x} + \bar{C}_{x})^{2} + \bar{B}^{2}_{x}}, \qquad (2.2.38)$$

$$\bar{F}_{B} = c_{1}^{-1} \left\{ \frac{\left[(\bar{w}^{2} + D)^{2} + E \right]^{1/2} + (\bar{w}^{2} - F)}{(\bar{w}^{2} + D)^{2} + E} \right\}^{1/2}, \qquad (2.2.39)$$

$$\cos \alpha = c_1 \sigma = \left[1 - (c_1/c_2)^2\right]^{1/2},$$

$$\tilde{A}_{x} = c_1^2 \tilde{A} = x \left[(c_1/c_4)^2/2 - 1 - x^2 \right]^2,$$

$$\tilde{B}_{x} = c_1^5 \tilde{B} = x (1 + x^2) \left[(c_2/c_4)^2 - 1 - x^2 \right]^{1/2},$$

$$\tilde{C}_{x} = c_1^5 \tilde{C} = b (c_1/c_4)^4 (\cos^2 \alpha + x^2)^{1/2}/4.$$

The first three terms of Equation (2.2.37) are calculated using the same cards as for the fast shear case. The integrand of the second integral is computed in FUNCTION ONEL. \overline{F}_A and \overline{F}_B are expressed in Cards ONEl019, 20, and 21. \overline{A}_X , \overline{B}_X , and \overline{C}_X are calculated in Cards ONEl015-17. The terms corresponding to D, E, and F are denoted by P(11), P(12), and P(13) and are evaluated in Cards STPB029-31. The value of the integrand is stored in the variable ONEl in Card ONEl023. The response STPW = R_1P_T (t) is then determined in Cards STPB079 and 80.

2.3 The Complex Arithmetic Method for Calculating the Step Wave Response

A second option for calculating the step wave response is provided by the complex arithmetic method. This procedure is based on the equation (Britt (5-2.12))

$$P_{r}(t) = \frac{2}{\pi} \int_{y_{1}}^{y_{2}} \operatorname{Re} \left\{ \frac{u}{\alpha_{1} \gamma} (K - K_{1}) \right\} dy$$

$$+\frac{2}{\pi R_r} \operatorname{Im} \left\{ K_1 \log \left[\frac{R_r \omega_2 - d_r t/R_r}{f(\omega_1)} \right] \right\} \qquad (2.3.1)$$

where u = x + iy and for $t < t_c = R_r/c_1$

$$x = 0$$

$$y_1 = c_2^{-1}$$

$$y_2 = R_r^{-2} \left[tr - d_r (c_1^{-2} R_r^2 - t^2)^{-1/2} \right].$$
(2.3.2)

For times $t > t_c$ these variables are

$$x = R_{r}^{-2} d_{r}(t^{2} - c_{1}^{-2}R_{r}^{2})^{-1} / 2$$

$$y_{1} = 0$$

$$y_{2} = R_{r}^{-2}tr.$$
(2.3.3)

The reflection coefficient K for a solid bottom is defined

$$K = \frac{\alpha_1 \left[(2u^2 + c_4^{-2})^2 - 4u^2 \alpha_2 \alpha_4 \right] - b\alpha_2 c_4^{-4}}{\alpha_1 \left[(2u^2 + c_4^{-2})^2 - 4u^2 \alpha_2 \alpha_4 \right] + b\alpha_2 c_4^{-4}}, \qquad (2.3.4)$$

where

$$\alpha_{i} = (c_{i}^{-2} + u^{2})^{1/2}$$
 for $i = 1, 2, 4$.

For a fluid bottom $c_4 = 0$, and the equation for K reduces to

$$K = (\alpha_1 - b\alpha_2)/(\alpha_1 + b\alpha_2).$$
 (2.3.5)

 K_1 is the value of K at $u = x + iy_2$. The other variables used above are as follows:

$$Y = \left[u^2 r^2 + (t - d_{r} \alpha_1)^2 \right]^{1/2}$$
 (2.3.6)

$$\omega_1 = \left[c_1^{-2} + (x + iy_1)^2 \right]^{1/2}$$
 (2.3.7)

$$\omega_2 = \left[c_1^{-2} + (x + iy_2)^2 \right]^{1/8} \tag{2.3.8}$$

$$f(\omega_1) = \left[R_r^2 w_1^2 - 2 d_r t \omega_1 + (t^2 - c_1^{-2} r^2) \right]^{1/2} + w_1 R_r - d_r t / R_r. \quad (2.3.9)$$

The form of Equation (2.3.1) which is coded is

$$R_{i}P_{r}(t) = \left\{A_{2} + \int_{C_{1}y_{1}}^{C_{1}y_{2}} Re\left[F \cdot (K-K_{1})\right] dz\right\} / (\frac{\pi R_{r}}{2R_{i}})$$
 (2.3.10)

where $z = c_1 y$,

$$A_{2} = Im \left[K_{1} \log \left\{ \left[c_{1} \tilde{w}_{2} - c_{1} \tau_{m} \cos \theta \right] / \left[\left(c_{1}^{2} w_{1}^{2} - 2c_{1} \tau_{m} \cos \theta \right) (c_{1} w_{1} \right) + \left(c_{1}^{2} \tau_{m}^{2} - \sin^{2} \theta \right)^{1/2} + c_{1} w_{1} - c_{1} \tau_{m} \cos \theta \right] \right\} \right],$$
(2.3.11)

and

$$F = \frac{c_1 u}{c_1 c_1 (c_1 Y/R_r)} = \frac{uR_r}{c_1 c_1 \gamma} . \qquad (2.3.12)$$

As in the Cagniard-Rosenbaum method, the response STPW = $R_1P_r(t)$ is calculated in SUBROUTINE STPWA for the precursor (t < t_c) and in SUBROUTINE STPWB for the main wave (t > t_c) using the Gaussian quadrature of FGI to evaluate the integral. The last factor in Equation (2.3.10) is calculated in Cards STPA039 and STPB097. The integrand and A_2 are coded in FUNCTION SEVEN, Cards SEVN035 and 045. The value of A_2 (t) is obtained from STPWA by a call to SEVEN with

 $z = c_1 y_2$. The function $K_1 = K(x+iy_2)$ is evaluated using the same equations as for K(u) in the integral, namely, RCOE in Cards SEVN022 and 029. In FUNCTION SEVEN the variables brought over by COMMON statements are calculated in the main program, and members of the P array are determined in Cards STPA035-38 for the precursor and in Cards STPB093-96 for the main wave.

2.4 The Stonley Wave Propagation Velocity

The Stonley wave propagation velocity c_{st} is defined as the zeroes $u = \pm i/c_{st} = \pm ik$ of the denominator of the solid bottom reflection coefficient expressed in Equation (2.3.4). Thus $u^2 = -c_{st}^{-2}$ is the solution of the equation

$$\alpha_{1} \left[(2u^{2} + c_{4}^{-2})^{2} - 4u^{2} \alpha_{2} \alpha_{4} \right] + b\alpha_{2} c_{4}^{-4} = 0, \qquad (2.4.1)$$
where
$$\alpha_{1} = (c_{1}^{-2} + u^{2})^{1/2},$$

$$\alpha_{2} = (c_{2}^{-2} + u^{2})^{1/2},$$
and
$$\alpha_{4} = (c_{4}^{-2} + u^{2})^{1/2}.$$

To obtain the form of Equation (2.4.1) which is used in the program, first note that the square roots α_1 , α_2 , and α_4 are imaginary since c_{st} is known to be smaller than c_1 , c_2 , and c_4 . Next replace u^2 by $-c_{st}^{-2}$, multiply through by $ic_1 c_2 c_4^{-4} c_{st}^{5}$, and set $y_2 = c_{st}^2$ to obtain

$$(c_1^2 - y_2)^{1/2} \{c_2(y_2 - 2c_4^2)^2 - 4c_4^3[(c_8^2 - y_2)(c_4^2 - y_2)]^{1/2}\}$$

$$+ bc_1 y_2^2 (c_3^2 - y_3)^{1/2} = 0.$$
(2.4.2)

This equation is solved for y_2 in SUEROUTINE STONL by iteration using the secant method. The variable y_2 is denoted by the FORTRAN symbol Y2. Then $c_{\rm st}$, called CSTON in the code, is the square root of Y2.

2.5 Theory of the Plane Wave Bottom Reflection

In cases where the plane wave bottom reflection is adequate for one's needs or when one wishes to compare these results with the spherical wave reflection, the plane wave option of the BOTREF program can be used. The reflection geometry, incident and critical angles, and the incident pulses are the same as for the spherical wave in Section 2.1; and, unless otherwise noted, the notation is the same.

2.5.1 The Plane Wave Reflection Coefficient and Phase Shift.

The plane wave reflection coefficient K and phase shift ø for a non-rigid bottom are calculated from the following equations. For subcritical angles of incidence K and ø are

$$K = (A_T - 1)/(A_T + 1)$$
 (2.5.1)

a nđ

$$\phi = 0$$

where $A_{T} = \cos \theta / [b(\sin^2 \theta_{cr} - \sin^2 \theta)^{1/2}].$ (2.5.2)

At the critical angle $^{\circ}$ cr these expressions reduce to K = 1 and ϕ = 0. At supercritical incidence we have

$$|K| = 1$$
 $\phi = 2 \arctan [b(\sin^2 3 - \sin^2 \alpha_{cr})^{1/2}/\cos \theta].$
(2.5.3)

and

The above equations are coded in the main program Cards BOTR260-274, 307. The FORTRAN variables CR and E2 denote K and ϕ . If K is complex, then CR = |K|.

For a rigid bottom K and ϕ are determined from the equations below. At subcritical incidence, θ < $\theta_{\rm cr}$ < $\theta_{\rm crs}$, we have

$$K = (A_{T} + B_{T} - 1)/(A_{T} + B_{T} + 1)$$

$$\phi = 0$$
(2.5.4)

where

$$A_{\rm T} = \cos \theta \left[1 - 2\sin^2 \alpha / \sin^2 \alpha _{\rm crs} \right]^2 / \left[b(\sin^2 \alpha _{\rm cr} - \sin^2 \theta)^{1/2} \right]$$
(2.5.5)

and

$$B_{T} = 4\cos \theta \sin^{2}\theta \left(\sin^{2}\theta_{CTS} - \sin^{2}\theta\right) /$$

$$\left[b \sin^{4}\theta_{CTS} \left(\sin^{2}\theta_{CTS} - \sin^{2}\theta\right)^{1/2}\right]. \qquad (2.5.6)$$

At the critical angle $\theta = \theta_{\rm cr}$ the equations simplify to K = 1 and $\phi = 0$. For an incident angle in the range $\theta_{\rm cr} < \theta < \theta_{\rm crs}$ the reflection coefficient is complex. Its modulus is

$$|K| = \{ [A_{TA}^2 + (B_{T} - 1)^2] / [A_{TA}^2 + (B_{T} + 1)^2] \}^{1/2},$$
 (2.5.7)

and the phase shift is

$$\phi = \arctan[(1-B_T)/A_{TA}] + \arctan[(1+B_T)/A_{TA}], \qquad (2.5.8)$$

where

$$A_{TA} = \cos \theta \left[1 - 2\sin^2 \theta / \sin^2 \theta \cos^2 \theta \right]^2 / \left[b (\sin^2 \theta - \sin^2 \theta \cos^2 \theta)^{1/2} \right] (2.5.9)$$

At the critical angle of the shear wave θ_{CTS} the equations reduce to |K| = 1

and
$$\phi = 2 \arctan(1/A_{TA})$$
. (2.5.10)

For angles of incidence θ > $\theta_{\tt crs}$ we have

$$|K| = 1$$

and
$$\phi = 2 \arctan \left[1/(A_{TA} + B_{TA}) \right]$$
 (2.5.11)

where
$$B_{TA} = 4 \cos \theta \sin^2 \theta (\sin^2 \theta_{crs} - \sin^2 \theta) /$$

$$\left[b \sin^4 \theta_{crs} (\sin^2 \theta - \sin^2 \theta_{crs})^{1/2} \right]$$
(2.5.12)

These equations for the solid bottom reflection coefficient and phase shift are coded in Cards BOTR280-307. As for the fluid bottom, K and ϕ are denoted by CR and E2; and if K is complex, CR= |K|.

2.5.2 The Plane Wave Bottom Reflection Pressure History. The plane wave bottom reflection pressure history $p_r(t)$ is calculated from the following equations:

when
$$\theta \leq \theta_{cr}$$
,
$$p_{r} = 0 \qquad \qquad \text{for } t < t_{c} = R_{r}/c_{1}$$

$$p_{r} = p_{r}(R_{r}) \kappa \exp[-(t-t_{c})/G_{r}] \qquad \text{for } t \geq t_{c}$$
(2.5.13)

when $\theta > \theta_{cr}$,

$$p_{r} = p_{F}(R_{r})^{\frac{1}{H}} \exp[-(t-t_{c})/G_{r}] E_{1}[(t_{c}-t)/G_{r}] \sin \phi \quad \text{for } \delta \leq t < t_{c}$$

$$p_{r} = \pm \infty \quad \text{with the sign of } \phi \qquad \qquad \text{for } t = t_{c}$$

$$p_{r} = p_{r}(R_{r}) |K| exp[-(t-t_{c})/G_{r}] \cos \phi$$

$$-\frac{1}{\pi} Ei [(t-t_{c})/G_{r}] \sin \phi$$
for t > t_c (2.5.15)

Note that the plane wave theory has been modified to use $p_F(R_T)$ and $G_T = G(R_T)$ which account for non-linear changes of the shock wave peak pressure and time constant with distance. Also the arrival times of the main wave and precursor have been changed to conform to the spherical wave situation. In the strict plane wave theory

the precursor begins at $t = -\infty$, and the incident wave and the reflected peak arrive simultaneously.

The functions $E_1(x)$ and Ei(x) are the exponential integrals defined for x>0 as

$$E_1(x) = \int_{x}^{\infty} \frac{\exp(-y)}{y} dy$$
 (2.5.16)

$$Ei(x) = -\int_{-x}^{\infty} \frac{\exp(-y)}{y} dy = -E_1(-x)$$

$$= \int_{-\infty}^{\infty} \frac{\exp(y)}{y} dy . \qquad (2.5.17)$$

The function E_1 (x) is evaluated using the following approximate formula (see for example Abramowitz and Stegun (5))

$$0 \le x < 1$$

$$E_1(x) \approx a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 - \log(x)$$

$$(2.5.18)$$

$$a_0 = -.57721566$$
 $a_3 = .05519968$
 $a_1 = .99999193$ $a_4 = -.00976004$
 $a_2 = -.24991055$ $a_5 = .00107857$

$$x \exp(x) E_1(x) \approx \frac{x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4}{x^4 + b_1 x^3 + b_2 x^2 + b_3 x + b_4}$$
 (2.5.19)

$$a_1 = 8.5733287$$
 $b_1 = 9.5733223$ $a_2 = 18.059017$ $b_2 = 25.632956$

$$a_3 = 8.6347609$$
 $b_3 = 21.0996531$ $a_4 = .26777373$ $b_4 = 3.9584969$

The function Ei(x) is evaluated for $x \le .5$ using the formula (Reference (5))

Ei(x)
$$\approx Y + \log (x) + \sum_{n=1}^{7} \frac{x^n}{nn!}$$
 (2.5.20)

where y = .57721566... is Euler's constant. For x > .5, Ei(x) is obtained from

$$\exp(-x) E_{i}(x) = \exp(-x) E_{i}(1) + \int_{1}^{x} \frac{\exp(y-x)}{y} dy,$$
 (2.5.21)

where $E_{i}(1) = 1.8951178$. The integral is then evaluated using the Gaussian quadrature of FUNCTION FGI.

The reflected pressure p_r = PBOT is calculated in the main program in Cards BOTR861-879. The exponential integrals E_1 and E_1 are calculated in the subprograms EXE1 and EXEI, and the integrand of Equation (2.5.21) is coded in FUNCTION EXPO.

3. THE BOTTOM REFLECTION COMPUTER CODE

The Bottom Reflection Code has been programmed in FORTRAN IV for use on the CDC 6400 computer at NOL. The code is made up of a main program called BOTREF and the following bottom reflection related subprograms: STONL, STPWA, STPWB, ONE, ONE, TWO, SEVEN, EXEL, EXEL, EXPO, FGI, PLOTL, and SCAL. In addition, the NOL general purpose plotting program CALCM1 must be included for the generation of a tape to be plotted on CALCOMP incremental plotters. For NOL users CALCM1 is available on the subroutine library tape. The control cards which are included in the program listing of Appendix A contain the statements necessary for using CALCM1 from the library tape. For programmers outside of NOL information on the plotting programs may be obtained from the NOL Mathematics Department (Code 330).

The basic organization of the bottom reflection code is as follows. The main program BOTREF handles all of the input and output and calculates the shock wave peak pressure and time constant and other time independent magnitudes. It performs the time incrementation of the pressure-time histories and calculates the convolution integral, impulse, and energy flux for the spherical wave bottom reflection.

The spherical wave step wave response $P_r(t)$ is obtained by calls from BOTREF to STPWA for the precursor and to STPWB for the main wave. These subroutines in turn set up the integration for $P_r(t)$ using the Gaussian quadrature in FGI. The various integrands described in Sections 2.2 and 2.3 are calculated in subprograms ONE, ONEl, TWO, and SEVEN. The Stonley wave propagation velocity

c_{st} for **rigid** bottoms is computed in SUBROUTINE STONL on a call from the main program.

The plane wave bottom reflection is also calculated in the main program. Calls to **SUBROUTINES** EXEL and EXEL obtain the exponential integrals E_1 and E_1 which are used to determine the bottom reflection in Equations (2.5.13), (2.5.14), and (2.5.15).

SUBROUTINES PLOT1 and SCAL set up the CALCOMP plots of the pressure-time history. PLOT1 calls SCAL to scale the plot, calls CALCM1 for plotting the axes and the pressure-time curves, and then calls SUBROUTINES SYMBL4 and NUMBR, which are part of the CALCM1 program, to write additional information on the plots.

The Bottom Reflection Program also has an option for calculating the peak translational velocity (PTV) induced in submerged or floating targets by the bottom reflected pulse. Either of the spherical or plane wave reflection theories may be used. The targets are approximated by an infinitely long cylinder of a specified radius, and the PTV Program described in Reference (6), is used to calculate the peak translational velocity. This program uses the additional subroutines PTV, FV, Fl, XMAX, VTAB, and PTAB. The PTV is calculated by calling SUBROUTINE PTV (Cards BOTR813L and 813M).

The cards in the main program which are necessary for PTV calculations are denoted by card numbers followed by letters A, B, C, etc. If the bottom reflection program is not to be used for PTV calculations, these cards and the subroutines of the PTV Program may be omitted.

In the following paragraphs the most important FORTRAN symbols of each subprogram are described, and the locations in the program are given where each symbol is calculated.

3.1 FORTRAN Symbols of the Main Program

Program Input

The input data is read in Statements 3 and 4, Cards BOTR041, 42, and 89, and in Card BOTR1011 using the format 8F10.5. These inputs are explained in comment Cards BOTR011-39, 72-87, and 101B-101G. The inputs and their units are as follows:

First Data Card, Statement 3

WCH charge weight W in pounds or KT

CWATER sound velocity c1 of water in ft/sec

CBOT sound velocity c2 of the bottom material in ft/sec

CSHEAR a double purpose input expressing the rigidity of the bottom.

If CSHEAR > .5, it is the shear wave propagation velocity

c₁ of the bottom in ft/sec. If CSHEAR ≤ .5, it is the dimen sionless Poisson ratio from which the shear velocity c₁ is

calculated in Card BOTR062. Values of c₁ ≤ .5 can be neglected.

RHOWAT density pr of water in gm/cm3

RHOBOT density p₂ of the bottom material in gm/cm³

PRECOE coefficient C_p of the pressure similitude equation in psi.

PRECOE depends on whether W is in pounds or KT.

a control parameter. Z5 greater than zero results in a shorter print out for the spherical wave reflection.

See Appendix B to compare the short and long print out.

Second Data Card, Statement 3

PREEXP exponent n of the pressure similitude equation

THECOE coefficient C_G of the time constant similitude equation in seconds. This variable also depends on the units of W.

THEEXP exponent n_G of the time constant similitude equation steps number of points in the pressure-time history for one time constant G. STEPS = 20. is usually sufficient to obtain a smooth, detailed pressure history. In many cases, STEPS = 10. or 5.0 is adequate.

DURAT duration of pressure-time history in multiples of the time constant G. If negative, its absolute value is the duration after the arrival of the bottom reflection peak at $t = t_c$. If positive, it is the duration after the direct wave arrival. DURAT = -3.0 is generally sufficient for calculating the significant parts of the bottom reflection.

CALCOMP plot scaling parameter for the Y-axis in psi per inch of graph. The X-axis is always drawn three inches above the bottom of the graph. The length of the Y-axis is nine inches. Thus the maximum pressure plotted is 6 * Xl, and the minimum is -3 * Xl. Pressures outside of this range are plotted at the maximum or minimum, whichever is applicable.

X2 scaling parameter for the X-axis in microseconds per inch of graph. If X2 ≤ 0., SUBROUTINE SCAL calculates an appropriate value of X2.

SLOPE slope of the bottom from charge to gauge in degrees. If the slope is not zero, the internal computing geometry is changed in Cards BOTR170-183. SLOPE must be zero if the geometry changing options of Z2 and THOVAL are used.

Third Data Card, Statement 4

BIGH water depth H at the charge in feet. BIGH is also used as a control parameter. After completion of each bottom

reflection pressure-history, the program control returns to Statement 4 to read a new set of data. If BIGH = 0., the program stops. If positive, computation continues with the new geometry. If negative, program control transfers to Statement 3 where a new set of charge, physical constants, etc., are read.

D depth d of the charge below the water surface n feet

DGAU depth d of the gauge in feet

SMALLR horizontal range r between charge and gauge in feet
THOVAL desired ratio between the bottom reflection incident angle
θ and the critical angle θ_{Cr}. The variables D and DGAU are changed in Cards BOTR137-142 to obtain this ratio.
SMALLR is not changed. If THOVAL ≤ 0 the geometry is not changed. See Appendix C for a discussion of this option.

- parameter which selects the theory. When Z1 = 0. the spherical wave Cagniard-Rosenbaum method is used. When Z1 = 1.0, the Arons-Yennie plane wave theory is used. And for Z1 = 3.0, the complex arithmetic method is used to calculate the spherical wave bottom reflection. Cards BOTR389-4/3 make the theory selection and write out the appropriate headings.
- arrival time difference between the bottom reflection peak

 (at t = t_C) and the direct wave in microseconds. If Z2 ≤ 0.,
 the geometry is not changed. When the geometry is changed,
 D and DGAU are varied to obtain the desired arrival time
 difference. SMALLR is not changed, and the change in D
 is the negative of the change in DGAU so that the incident

angle θ is also unchanged. This geometry change is performed in Cards BOTR121-127. See Appendix C for a discussion of this option.

plot control parameter. A CALCOMP plot tape is generated if Z3 = 0.

Fourth Data Card (BOTR1011), For PTV Calculation

RADIUS cylinder radius in feet. This is the draft or crosssectional radius of the target vessel. If RADIUS ≤ 0., the PTV is not calculated.

controls printing in SUBROUTINE PTV. If APRINT ≤ 0 ., the translational velocities calculated in the iteration for the PTV are printed. An example of this printout is given in Table B.1 following the pressure-time history.

If APRINT ≥ 0 ., the variables TIME1, PTV1, and PTV2 described below are printed from the main program (Card BOTR813N).

Program Output

APRINT

Appendix B contains examples of the full print out and the shorter print out for the spherical wave reflection and a print out for a plane wave reflection. Most of the variables in the output are self-explanatory; others which are not so well defined are described below.

SMALLH height h = H - d of the charge above the bottom

DEZFRO height d - d between the charge and gauge depths

D2 reduced height d_r/R_i from image charge to gauge

COSAL C1 G

COSTH $\cos \theta$

SINTH $\sin \theta$

DT increment At of the reduced time t

EDT $\exp(-\Delta t/G_r)$

T reduced time t

STPW R, P, (t)

FI/THETA $R_iF_I(t)/G_r$

PD incident pressure p, in psi

TIME time in seconds relative to the direct wave arrival time

PBOT bottom reflected pressure pr in psi

PS surface reflected pressure p in psi

P total pressure $p = p_i + p_r + p_s$ in psi. Negative pressures are cut off so that P + hydrostatic ≥ 0 .

FIMP total impulse I in psi-sec calculated from the equation $I = \int_{t_0}^{t} p \, dt, \text{ where } t_0 \text{ is the minimum of } \delta \text{ and } R_i/c_1$

EFLUX energy flux E_F in in-psi defined by the equation

 $E_F = (\int_{t_0}^{t} |p| p dt)/(2.3066\rho_1 c_1)$

VMID value of STPW at t - Δt , $R_i P_r (t - \Delta t)$

PRE value of STPW at t - 2At

RESID R. A

RFIMP reduced impulse I/W1/3

REFLUX reduced energy flux E_F/W^{1/3}

POSIMP impulse of the positive part of the total pressure pulse p(t)

RPOSIM reduced positive impulse, POSIMP/W1/3

TIME1 time in seconds of the PTV, where time is taken to be zero at the beginning of the bottom reflection

PTVl the PTV in ft/sec induced by the bottom reflection in a submerged target

PTV2 the PTV in ft/sec induced by the bottom reflection in a target at the surface

Time Independent FORTRAN Symbols

Symbol	Definition	Card Number
В	$b = \rho_1/\rho_2$	BOTR050
POISR	Poisson ratio $\bar{c} = (.5c_2^2 - c_4^2)/(c_2^2 - c_4^2)$	59
CSHEAR	shear velocity c_4 calculated from $\tilde{\sigma}$	62
CSTON	Stonley wave velocity cst	69
SMALLH	h for zero slope	147
RACTU	$R_{\mathbf{i}}$	151
PH	negative of the hydrostatic pressure	
	at depth d _g	154
RS	reduced surface reflection arrival time	158
W13R	W ^{1/3} /R _i	162
REDR	$R_i/W^1/3$	163
THETA	Ğ	164
PACT	$p_{\mathbf{f}}(R_{\mathbf{i}})$	165
TACT	characteristic time R _i /c ₁	166
THET	G in milliseconds	167
A	bottom slope in radians	172
D2ACTU	d _r	187
R2ACTU	$R_{\mathbf{r}}$	188
CTWO	$\sin \theta_{\rm cr} = c_1/c_2$	213
R2	reduced bottom reflection slant range	
	R _r /R _i	214
THETAR	$\tilde{G}_{r} = \tilde{G}(R_{r})$	215
THETR	G _r in milliseco:.is	216

Symbol	(R _r /R _i) n _G -1 Definition (R _s /R _i) n _G	Card Number
PACTC	$(R_r/R_i)^{n_G-1}$	BOTR217
R1	(R _C /R _L) G	
THETSR	G _s	218
SINTH	sin 0	219
COSTH		221
D2R2	cos θ	222
DERZ	$c_1 \delta/R_1$ for supercritical reflection	226
	c ₁ 6/R _i for subcritical reflection	228
SINAL	sin ⁰ cr	235
COSAL	$\cos \theta_{cr} = c_1 \sigma$	238
SINBE	sin 0 crs	243
THE	incident angle 0 in degrees	245
CR	plane wave reflection coefficient K	261-304
E2	phase shift ø in radians	
EE	phase shift ϕ in degrees	260-307
ANGA	angle of shear wave in bottom in degrees	308
THONE	angle of compression wave in bottom in	312,315
	degrees	
ALPHA		319,321
ветна	θ _{cr} in degrees	352
	ecrs in degrees	358
SHD2R2	reduced arrival time of critically	
	refracted shear wave	363-365
C2	c ₁ ²	446
CBCT2	C₂ ²	447
CSHR2	C ₄ ²	
SINTH2	sin ² θ	448
CBSH	$-4c_4^3/c_2$	449
	7 08	450

Symbol	<u>Definition</u>	Card Number
C2SHR2	2c ₄ ²	BOTR451
C4CB	$c_1^4 b/c_2$	452
Spherical Wave	Pressure-Time Calculations	463-816
Symbol	<u>Definition</u>	Card Number
DT	increment Δt of reduced time increment Δt $\approx \Delta \bar{t}/8$	BOTR476,500,652 566,609
DT1	original value of $\Delta \overline{t}$	47 8
DTACT	2Δt/3	479,501
EDT	$exp(-\Delta t/\bar{G}_r)$	481,503
N	control parameter for pressure history	721,804
VMID	$R_i P_r (\bar{t} - \Delta \bar{t})$	542-662
STPW	$R_{i}P_{r}(\overline{t})$	520-690
PRE	$R_{i}P_{r}(\bar{t}-2\Delta\bar{t})$	557-691
FI	convolution integral F _I	556-673
NP	number of subintervals to be used in	
v	the Gaussian quadrature integration for $P_r(t)$ $v(t)/t_c$ for $t \approx t_c - 2\Delta t'$ where $\Delta t'$	196,552-693
	is approximately $\Delta t/8$	573
Tl		5 7 8
T2	t(.75 V)	579
T3	t(.5 V)	580
Т4	t(.25 V)	581
ប	$u(t_c+2\Delta t')/t_c$ for $\Delta t' \approx \Delta t/8$	616
T 2	t(.25 U)	623
T 3	t(.5 U)	624
T4	t(.75 ℧)	625
T 5	£ (U)	626

Symbol	<u>Definition</u>	Card Number
PD	incident pressure p _i (t)	BOTR702
PS	surface reflected pressure ps(t)	704
PBOT	bottom reflected pressure pr(t)	707
P	total pressure p = p _i + p _r + p _s . Negative	e
	values of p are cut off at p + hydrostat	ic ≥ 0. 713
Impulse and Ene	ergy Flux Calculations	717-767
Symbol	<u>Definition</u>	Card Number
XP	maximum of pressure p and zero	BOTR720
PMID	pressure p of even numbered time t-At	724
XPMID	maximum of PMID and zero	72 5
PPRE	pressure p at odd numbered time t-2At	763
XPPRE	maximum of PPRE and zero	764
PEND	pressure p(t) at odd numbered time	757
XPEND	maximum of PEND and zero	7 58
Variables Used	in the PTV Calculation and in Plotting	
Symbol	<u>Definition</u>	Card Number
xx	storage array for time in microseconds	
	for CALCOMP plot. Here time is zero	
	at the arrival of the direct wave.	BOTR800,889
YY	storage array for the total pressure	
	p for plot	801,890
IPMAX	number of plot points stored in XX and	
	YY arrays	807
QX	the array in which the time in seconds :	is
	stored for PTV calculations. This time	is 802E,813H,
	zero at the beginning of bottom reflect:	
	AA	

Symbol	<u>Definition</u>	Card Number
QY	the array in which the bottom reflection	
	pressure pr(t) is stored for PTV calcula	-
	tions. If $p_r(t)$ is negative, the value	
	stored in QY is calculated so that	0mn003m 013r
	p _r (t) + hydrostatic ≥ 0	orr802F,813I and 891F
TIMER2	arrival time of the peak or singularity	
	of the bottom reflection. Time in this	
	case is measured from the beginning	
	of the bottom reflection.	813C
XT3	signals the approach of the bottom	
	reflection singularity. The value	
	TIMER2 - $2\Delta t$ is used. The symbol T3	
	is used for this variable in SUBROUTINE	
	PTV.	813D
XT4	The earliest time at which the trans-	
	lational velocity is to be calculated.	
	The symbol T4 is used instead of XT4 in	
	SUBROUTINE PTV.	813E
XT5	the largest value of time at which the	
	translational velocity is to be	
	calculated. The symbol T5 is used inste	ad
	of XT5 in SUBROUTINE PTV.	813F
COSA	cosine of the angle which the bottom	
	reflection ray makes with the water surf	ace
	or a line parallel to the surface if the	
	gauge position is below the surface	813J

Symbol	Definition	Card Number
PTS	the number of times at which the trans-	
	lational velocity is calculated in the	
	initial search for the PTV. In the call	
	to SUBROUTINE PTV the value PTS = 30.	
	is used.	BOTR813L
Plane Wave Bott	com Reflection Variables BOTI	R8 19-90 5
Symbol	Definition	Card Number
sw	direct wave response p _i (t)/p _F	BOTR852
PRFL	bottom reflection response pr(t)/pr	85 7-877
твтн	(t - t _c)/ _G	863
XE1	exp(-TBTH) E ₁ (-TBTH)	865
XEI	exp(-TBTH) Ei(TBTH)	874
3,2 FORTRAN Sy	mbols of SUBROUTINE STONL	
Symbol	<u>Definition</u>	
Y2	y ₂ = c ² st	
FY	Equation (2.4.2) which defines y2	
CK	increment of $y_2 = y_2/1000$	
CSTON	Stonley wave velocity cst	
3.3 FORTRAN Sy	mbols of SUBROUTINE STPWA	
Symbol	Definition	Card Number
TR	c ₁ T _m	STPA013
v	$c_i (c_1^{-2} - 1_m^{-2})^{1/2}$	14
Cagniard-Rosenbaum Method, CONTR = 0.		
P(9)	0. for precursor	20
XM	c ₁ M	21

Symbol	<u>Definition</u>	Card Number
P(1)	c ₁ (σ - M)	STPA022
P(2)	$4(c_1^{-2} - \tau_m^2)^{1/2} \sin \theta/(\sigma - M)$	23
P(5)	$c_1 (\sigma + M)$	24
FACTOR	$2\sqrt{2} b R_i/mR_r$	25
STPW	R _i P _r (t)	27,43
Complex Arithme	etic Method, CONTR = 3.0	
P(1)	$c_1 x = 0.$	35
P(2)	c ₁ τ _m	36
P(3)	$c_1/c_2 = c_1 y_1$	37
P(4)	c1 A5	38
FACTOR	$\pi R_{r}/2R_{i}$	39
ANS2	A ₂	41
3.4 FORTRAN S	mbols of SUBROUTINE STPWB	
	AMDOIS OI BUBROUITAL SIFNE	
Symbol	Definition	Card Number
		Card Number
Symbol TR	Definition	
Symbol TR	Definition C1 Tm	
Symbol TR Cagniard-Rosen	Definition $c_1 \tau_m$ caum Method, CONTR = 0.	STPB014
Symbol TR Cagniard-Rosen P(9)	Definition C1 Tm caum Method, CONTR = 0. 1.0 for main wave	STPB014 20
Symbol TR Cagniard-Rosen P(9) XK	Definition C1 Tm caum Method, CONTR = 0. 1.0 for main wave C1 Km	20 23
Symbol TR Cagniard-Rosen P(9) XK XL	Definition C1 Tm caum Method, CONTR = 0. 1.0 for main wave C1 Km C2 L	20 23 24
Symbol TR Cagniard-Rosen P(9) XK XL P(7)	Definition C1 Tm caum Method, CONTR = 0. 1.0 for main wave C1 Km C1 L XK	20 23 24 26
Symbol TR Cagniard-Rosen P(9) XK XL P(7) P(8)	Definition C1 Tm caum Method, CONTR = 0. 1.0 for main wave C1 Km C2 L XK XL	20 23 24 26 27
Symbol TR Cagniard-Rosen P(9) XK XL P(7) P(8) P(11)	Definition C1 Tm caum Method, CONTR = 0. 1.0 for main wave C1 Km C2 L XK XL C1 2D	20 23 24 26 27 29

Symbol	Definition	Card Number
TERM1	$(R_i/R_r)(1 - b)/(1 + b)$	STPB038
SIGM	c ₁ o	42
STPW	R _i P _r (t)	43,47,79,85,100
XG1	c ₁ g ₁	60
XG3	c ₁ g ₃	61
XG4	c ₁ g ₄	62
XSA	$c_1^2 a/R_i^2$	63
XSF	c ₁ 4 f/R _i 4	64
XNUM	numerator of Γ	65
XDEN	c_1^{-2} times the denominator of Γ	66-67
RESID	$R_{\mathbf{i}}^{\Delta}$	68-69
TERM1	$R_{i}(1/R_{r} + \Delta)$	71
SIG2	$c_1 (c_4^{-2} - c_1^{-2})^{1/2}$	78
Complex Arithme	etic Method, CONTR = 3.0	
P(1)	$c_1 x = c_1 \cos \theta (\tau_m^2 - c_1^{-2})^{1/2}$	93
P(2)	c ₁ ¹ m	94
P(3)	$c_1 y_1 = 0$	95
P(4)	$c_1 y_2 = c_1 \tau_m \sin \theta$	96
FACTOR	$\pi_{r}/2R_{i}$	97
ANS2	A ₂	99

3.5 FORTRAN Symbols of FUNCTION ONE

Symbol	<u>Definition</u>	Card Number
Precursor	Variables	
x	integration variable	ONE 008
W	C ₁ w	20

Symbol	<u>Definition</u>	Card Number
XC2	$c_1^2(\sigma^2 - \omega^2)$	OME 021,28
FX	F_{x} defined by Equation (2.2.4)	23
Main Reflection	Variables	
W	integration variable $w = c_1 w$	27
FX	F_{x} defined by Equation (2.2.21)	32
Variables for R	igid Bottom Precursors and Main Waves	
FRCS	$c_4^2(w^2 + c_4^{-2} - c_1^{-2})$	41
XA	Ax	43
XB	B _X	44
XC	c _x	50
ONE	rigid bottom integrands defined in	
	Equations (2.2.9), (2.2.14), and	
	(2.2.32) and the integrand of the first	
	integral in Equation (2.2.37).	47,51
ONE	fast non-rigid bottom integrands of	
	Equations (2.2.3) and (2.2.21)	55

3.6 FORTRAN Symbols of FUNCTION ONEL

Symbol	Definition	Card Number
x	integration variable $x = c_1 \overline{w}$	ONE1008
XAB	$c_1^{5}\tilde{A} = \tilde{A}_X$	15
хвв	$c_1^{\tilde{B}} = \bar{B}_X$	16
ХСВ	$c_1^{5}C = C_{\mathbf{X}}$	17
FAB	\bar{F}_{A} defined by Equation (2.2.38)	19
FBB	\bar{F}_{B} defined by Equation (2.2.39)	20,21
ONE1	integrand $\overline{F_AF_B}$ of the second integral	
	in Equation (2.2.37)	23
	49	

3.7 FORTRAN Symbols in FUNCTION TWO

Symbol	<u>Definition</u>	Card Number
x	integration variable $x = c_1 \tilde{w}$	TWO 007
FAB	\bar{F}_{A} defined by Equation (2.2.28)	13
FBB	\bar{r}_{B} defined by Equation (2.2.29)	14,15
TWO	integrand in Equation (2.2.27)	17

3.8 FORTRAN Symbols in FUNCTION SEVEN

Symbol	<u>Definition</u>	ard Number
Z	integration variable $z = c_1 y$	SEVN007
v	c ₁ u	14
RCOE	non-rigid bottom K defined by Equation (2.	3.5) 22
	rigid bottom K defined by Equation (2.3.4)	29
F	F defined in Equation (2.3.12)	34
SEVEN	integrand of Equation (2.3.10)	25
	A ₂ defined by Equation (2.3.11)	
RT5	K ₁	39
U1	$x + iy_1$	40
U2	C ₁ ² w ₁ ²	41
บ3	C1 W1	42
ХВ	-c ₁ T _m cos θ	43

3.9 FORTRAN Symbols in SUBROUTINE EXEL

Symbol .	Definition	Card Number
A	array a in Equation (2.5.19)	EXE1008
В	array b in Equation (2.5.19)	9
С	array a in Equation (2.5.18)	10,11
x	x	12

Symbol	Definition	Card Number	
ANS	$exp(x) E_1(x)$ for $x \ge 1$	EXE1014,15	
	$exp(x)$ $E_1(x)$ for $0 \le x < 1$	17,18	
3.10 FORTRAN S	Symbols in SUBROUTINE EXEL		
Symbol	Definition	Card Number	
Y	x	EXEI006	
A	array of $1/nn!$ for $n = 2,3,,7$ in		
	Equation (2.5.20)	9	
U	sum of the series in Equation (2.5.20)	11	
ANS	exp(-x)Ei(x) using Equation (2.5.20)	12	
ANS1	integral in Equation (2.5.21) evaluated		
	using the Gaussian quadrature of FUNCTIO	N	
	FGI	15	
ANS	exp(-x)Ei(x) using Equation (2.5.21)	16	
3.11 FORTRAN Symbols in FUNCTION EXPO			
Symbol	<u>Definition</u>		
x	integration variable y in Equation (2.5.	21)	
P(1)	$x = (t - R_r/c_1)/G_r$		
EXPO	integrand $\exp(y - x)/y$ in Equation (2.5.	21)	
3.12 FORTRAN S	ymbols in FUNCTION FGI		
Symbol	<u>Definition</u>		
A	lower limit of integration		
В	upper limit of integration		

Symbol	<u>Definition</u>
к	number of subintervals into which the integration
	interval (A,B) is divided. The integral in each
	subinterval is evaluated using a 4 point Gaussian
	quadrature.
F	integrand of the integral to be evaluated
P	array used to transfer parameters to the function F
FGI	value of the integral of F between A and B

REFERENCES

- L. Cagniard, E. A. Flinn, and C. H. Dix, <u>Reflection and Refraction of Progressive Seismic Waves</u>, <u>McGraw-Hill Book Company</u>, Inc., New York, 1962.
- 2. J. H. Rosenbaum, "Shockwave Propagation in Shallow Water I", NAVORD Report 4353, 8 August 1956, Unclassified.
- J. R. Britt, "Linear Theory of Bottom Reflections", NOLTR 69-44, 12 May 1969, Unclassified.
- 4. A. B. Arons and D. R. Yennie, "Phase Distortion of Acoustic Pulses Obliquely Reflected from a Medium of Higher Sound Velocity", Journal of the Acoustical Society of America, v. 22, 1950, pp. 231-237.
- 5. M. Abramowitz and I. A. Stegun, <u>Handbook of Mathematical</u>
 <u>Functions with Formulas, Graphs, and Mathematical Tables</u>,

 Dover Publications, New York, 1965.
- J. R. Britt, "The Translational Velocity of Surface Ships and Submarines: A Computer Program", NOLTR 71-65, 7 May 1971, Unclassified.

APPENDIX A

FORTRAN IV LISTING OF THE BOTTOM

REFLECTION PROGRAM BOT REF

BDCROTR.T600.CM70000.52400311.047.BRITT.
ATTACH(ABC.NOLBIN)
COPYN(0.DEF.ABC)
FTN(L)
LOAD(LGO)
REQUEST.TAPE99.LO.(CALCOMP/RING)
OEF.

RECORD SEPARATOR =(7-8-9) PUNCH IN COLUMN 1
REWIND(ABC)
CALCM1.13.ABC

RECORD SEPARATOR =(7-8-9) PUNCH IN COLUMN 1

```
PROGRAM ROTREF (INPUT.OUTPUT.TAPES=INPUT.TAPE6=OUTPUT.TAPE99)
                                                                                            BOTROOL
                                                                                            BOTROOZ
       BOTTOM REFLECTION PROGRAM (COC 6400 COMPUTER)
                                                                                            BOTROO3
       DIMENSION
                               XX(1000) • YY(1000)
                                                                                            BOTRO04
       COMMON /9XY/9X(1000)+9Y(1000)
                                                                                           BOTRO04A
       COMMON B.COSAL.COSTH.R2.SINBE.SINTH.CWATER.CBQT.CSHEAR.CSTON.RESID BOTROOS
       COMMON C2.CBOT2.CSHR2.CBSH.C2SHR2.C4CB.SINTH2
                                                                                            BOTROO6
       ADATE = DATE(0)
                                                                                            BOTROO7
       ICASF=1
                                                                                            BOTROO8
       PI=3,1415926
                                                                                            BOTRO09
                                                                                            BOTRO10
                                                                                            BOTR011
       READ INPUT DATA (FORMAT -- 8F10.5)
C
                                                                                            BOTRO12
         WCH----EXPLOSIVE CHARGE WEIGHT (LBS OR KT)
                                                                                            BOTR013
        CWATER--SOUND VELOCITY OF WATER (FT/SEC)
CROT---SOUND VELOCITY OF THE BOTTOM MATERIAL (FT/SEC)
CSHEAR--IF CSHEAR GT 0.5. IT IS THE SHEAR WAVE PROPAGATION
C
                                                                                            BOTRO14
                                                                                            BOTR015
C
                                                                                            BOTR016
C
                   VELOCITY OF THE BOTTOM (FT/SEC). IF CSHEAR LE 0.5. IT IS BOTRO17
                  THE DIMENSIONLESS POISSON RATIO.
                                                                                            BOTROIS
C
        RHOWAT -- DENSITY OF WATER (GM/CC)
RHOBOT--DENSITY OF BOTTOM NOTERIAL (GM/CC)
                                                                                            BOTR019
C
                                                                                            BOTR020
         PRECOE--COEFFICIENT OF PRESSURE SIMILITUDE EQUATION (PSI)
                                                                                            BOTR021
Č
         Z5-----CONTROL PARAMETER. Z5 GREATER THAN ZERO RESULTS IN A
                                                                                            BOTR022
CCC
                   SHORTER PRINT OUT
                                                                                            BOTR023
        PREEXP -- EXPONENT OF PRESSURE SIMILITUDE EQUATION
                                                                                            BOTRO24
        THE COE -- COEFFICIENT OF TIME CONSTANT SIMILITUDE EQUATION (SEC) THE FXP--EXPONENT OF TIME CONSTANT SIMILITUDE EQUATION
C
                                                                                            BOTR025
CCC
                                                                                            BOTR026
        STEPS---NUMBER OF POINTS IN P-T CURVE FOR ONE TIME CONSTANT OURAT---DURATION OF PRESSURE TIME HISTORY IN MULTIPLES OF THE
                                                                                            BOTR027
                                                                                            BOTRO28
                  TIME CONSTANT. (IF NEGATIVE. ITS ABSOLUTE VALUE IS THE OURATION AFTER THE ARRIVAL OF THE BOTTOM REFLECTION PEAK. IF POSITIVE. IT IS THE DURATION AFTER THE
                                                                                            BOTR029
CCC
                                                                                            BOTR030
                                                                                            BOTRO31
                   DIRECT WAVE ARRIVAL.
                                                                                            BOTR032
C
         X1-----CALCOMP PLOT SCALING PARAMETER FOR THE Y-AXIS (PSI PER
                                                                                            BOTR033
                   INCH OF GRAPH)
                                                                                            BOTRO34
C
         X2-----SCALING PARAMETER FOR THE X-AXIS (MICROSECONOS PER
                                                                                            BOTRO35
                  INCH OF GRAPH)
CC
                                                                                            BOTR036
         SLOPE---SLOPE OF BOTTOM FROM CHARGE TO GAUGE (DEGREES)
                                                                                            BOTR037
                                                                                            BOTR038
        ADDITIONAL DATA IS READ IN STATEMENT 4 (CARO BOTRO89)
                                                                                            BOTR039
```

```
C
                                                                                      BOTRO40
    3 READ (5.554) WCH. CWATER. CBOT. CSHEAR. RHOWAT. RHOBOT. PRECOE. Z5
                                                                                      BOTR041
       READ (5.556) PREEXP. THECOE. THEEXP. STEPS. DURAT. X1. X2. SLOPE
                                                                                      BOTROA2
       FORMATS ARE LISTED AT THE END OF THE PROGRAM, CARDS ROTRO07-1042
                                                                                      BOTRO43
C
                                                                                      BOTRO44
      DURAT IN PRINT OUT IS THE DURATION AFTER THE DIRECT ARRIVAL
                                                                                      BOTROA5
C
C
       STORF CRIGINAL DURAT
                                                                                      BOTRO46
C
                                                                                      BOTRO47
                                                                                      BOTRO48
       XDURAT=DURAT
C
                                                                                      BOTRO49
                                                                                      BOTR050
       B=RHOWAT/RHOBOT
C
                                                                                      BOTRO51
Č
                                                                                      BOTR052
      POISSON RATIO
                                                                                      BOTR053
       IF CCHEAR IS 0.5 FT/SEC OR LESS. THE POISSON RATIO POISR IS SET
                                                                                      BOTR054
       EQUAL TO CSHEAR AND THE SHEAR VELOCITY IS CALCULATED.
                                                                                      80TR055
C
                                                                                      80TR056
       IF(CSHEAR.LE.O.) GO TO 39
IF(CSHEAR.LE.O.5) GO TO 42
                                                                                      BOTROS7
                                                                                      BOTR058
   44 POISQ=(0.5*CHOT**2-CSHEAR**2)/(CHOT**2-CSHEAR**2)
                                                                                      BOTROS9
                                                                                      BOTRO60
       90 To 41
   42 POISO=CSHEAR
                                                                                      BOTR061
       CSHEAR=CHOT*SQRT((0.5-POISR)/(1.-POISR))
                                                                                      80TR062
                                                                                      BOTRO63
       60 To 41
   39 POIS9=0,5
                                                                                      BOTRO64
¢
                                                                                      80TR065
                                                                                      BOTRO66
       STONIEY MAVE PROPAGATION VELOCITY
                                                                                      BOTRO67
C
C
                                                                                      60TR068
                                                                                      BOTRO69
   41 CALL STONL
                                                                                      BOTRO70
C
C
                                                                                      BOTR071
       THE GECMETRY IS NOW READ IN (FORMAT -- 8F10.5)
                                                                                      BOTRU72
¢
                                                                                      BOTR073
¢
        BIGH --- WATER DEPTH AT THE CHARGE (FT).
                                                        ALSO USED AS A
                                                                                      80TR074
Ċ
                 CONTROL VARIABLE. SEE CARDS BOTRG94-97 BELOW
                                                                                      BOTR075
C
        D-----DEPTH OF THE CHARGE BELOW THE WATER SURFACE (FT)
DGAIJ----DEPTH OF THE GAUGE (FT)
                                                                                      BOTR076
                                                                                      80TR077
        SMALLR--HORIZONTAL RANGE BETWEEN CHARGE AND GAUGE (FT)

THOVAL--DESIRED RATIO BETWEEN THE BOTTOM REFLECTION INCIDENT AND BOTRO78

CRITICAL ANGLES. (IF THOVAL LE 0.9 THE INPUT GEOMETRY IS BOTRO80
CCC
                 NOT CHANGED.) SEE APPENDIX C OF NULTR 71-110.
                                                                                      BOTROAL
        Z1----PARAMETER WHICH SELECTS THEORY. (SEE CARDS BOTR391-394)
Z2----ARHIVAL TIME OF THE MAIN BOTTOM REFLECTION AFTER THE
CCC
                                                                                      BOTRO82
                                                                                      BOTROR3
                 DIRECT ARRIVAL (MICROSECONDS). GEOMETRY IS UNCHANGED IF
                                                                                      BOTR084
¢
                 22 LE O. SEE APPENDIX C OF NOLTR 71-110.
                                                                                      BOTRO85
        Z3-----PLOT CONTROL PARAMETER. A CALCOMP PLOT TAPE IS GENERATED
C
                                                                                      BOTRO86
¢
                 IF Z3 IS ZERO .
                                                                                      BOTR087
C
                                                                                      BOTROSS
    4 READ(5,554)BIGH,D,DGAU.SMALLR.THOVAL.Z1,Z2,Z3
                                                                                      BOTR089
       FORMATS ARE LISTED AT THE END OF THE PROGRAM, CARDS BOTR907-1042 AFTER COMPLETION OF EACH CASE PROGRAM CONTROL RETURNS TO
C
                                                                                      BOTRUGO
                                                                                      BOTR091
       STATFMENT 4. DEPENDING ON BIGH. THE CALCULATIONS ARE CONTINUED AS BOTRUGE
C
                                                                                      BOTROO3
       FOLLAWS
       IF BIGH = 0
                     PROGRAM STOPS
                                                                                      BOTRO94
                                                                                      BOTR095
       IF BIGH IS POSITIVE COMPUTATION CONTINUES USING THE PRESENT INPUT
¢
       IF BIGH IS NEGATIVE PROGRAM TRANSFERS TO STATEMENT 3 WHERE
                                                                                      BOTRO96
       ANOTHER SET OF CHARGE, PHYSICAL CONSTANTS, ETC. ARE READ.
                                                                                      BOTR097
                                                                                      BOTR098
       IF (BIGH) 3.1000.6
                                                                                      BOTR099
 1000 STOP
                                                                                      BOTR100
                                                                                      BOTR101
    6 WRITF (6,510) ADATE
       FORMATS ARE LISTED AT THE END OF THE PROGRAM, CARDS BOTR907-1042
                                                                                    BOTR101A
       ADDITIONAL DATA IS READ IN FOR PTV CALCULATION (FORMAT -- 8F10.5) BOTR1018
```

```
BOTR101C
       RADIUS--CYLINDER RADIUS IN FEET. THIS IS THE DRAFT OR CROSS-
SECTIONAL RADIUS OF THE TARGET VESSEL.
C
                                                                                   BOTR101D
                                                                                   BOTR101E
        APRINT -- CONTROLS PRINTING IN SUBROUTINE PTV.
¢
                                                             THE ITERATIONS TO
                                                                                   BOTR101F
Ċ
                 OBTAIN THE PTV ARE PRINTED OUT IF APRINT .LE. O.
                                                                                    BOTR101G
C
                                                                                   BOTR101H
                                                                                   BOTR1011
      READ (5.554) RADIUS, APRINT
      IPTV=0
                                                                                    BOTR101J
      A=0.
                                                                                   BOTR101K
1006 WRITF (6,550) ICASE
                                                                                    80TR102
      WRITE(6,511)BIGH
                                                                                    BOTR103
      WRITF (6,513)D
                                                                                     BOTR104
      WRITE (6.512) DGAU
                                                                                    BOTR105
C
      FORMATS ARE LISTED AT THE END OF THE PROGRAM, CARDS ROTR907-1042
                                                                                    80TR106
            CHANGE OF DEPTH OF EXPLOSION AND OF GAUGE FOR GIVEN ARRIVAL TIME 22 OF THE BOTTOM REFLECTION PEAK AFTER THE DIRECT
                                                                                     BOTRIN7
C
                                                                                     BOTR108
Č
            ARRIVAL. THE BOTTOM REFLECTION INCIDENT ANGLE AND SMALLR
                                                                                     BOTRIN9
Č
            ARE UNCHANGED. SEE APPENDIX C OF NOLTR 71-110.
                                                                                     BOTR110
C
                                                                                    BOTR111
      GEOMFTRY IS UNCHANGED IF Z2 IS NEGATIVE OR ZERO.
                                                                                    80TR112
C
                                                                                     BOTR113
                                                                                    B0TR114
      -DZACTU- IS THE ORIGINAL TOTAL DISTANCE BETWEEN THE GAGE AND THE
¢
      IMAGE CHARGE. -REACTU- IS THE ORIGINAL TOTAL SLANT DISTANCE FROM THE TAGE TO THE IMAGE CHARGE AND -HG- IS THE NEW VALUE OF THE HEIGHT OF THE GAGE ABOVE THE BOTTOM. NEW VALUES FOR -D- AND
                                                                                     BOTR115
C
                                                                                    BOTR116
¢
                                                                                     BOTR117
¢
C
       -DGAH- ARE CALCULATED.
                                                                                     80TR118
                                                                                     BOTR119
                                                                                     BOTR120
      IF(Z2.LE.O.) GO TO 2
    1 DZACTU=2.*(BIGH=D)+D=DGAU
                                                                                     BOTR121
      RZACTU=SART (SMALLR##2+DZACTU##2)
                                                                                     BOTR122
       DELR=22+(1.E-06)+CWATER
                                                                                     BOTR123
      CR2002=DELR*(2.*R2ACTU-DELR)/D2ACTU**2
                                                                                     BOTR124
      HG=0.5*02ACTU*(1.-SQRT(1.-DR20D2))
                                                                                     BOTR125
                                                                                     BOTR126
      DGAU=BIGH=HG
                                                                                     80TR127
      D=BIGH-D2ACTU+HG
                                                                                     80TR128
      WRITF(6,553) ZZ
      WRITE (6,513)D
                                                                                     BOTE 129
                                                                                     BOTR130
      WRITE (6,512) DGAU
                                                                                     80TR131
00000
       CHANGE OF GEOMETRY TO OBTAIN THE DESIRED RATIO
                                                                                     BOTRISE
       BETWEEN INCIDENT AND CRITICAL ANGLE=THOVAL
                                                                                     BOTR133
       GEOMETRY IS UNCHANGED IF THOVAL IS LESS THAN OR EQUAL TO ZERO.
                                                                                     BOTR134
      SEE APPENOIX C OF NOLTR 71-110-
                                                                                     BOTR135
      IF (THOVAL.LE.O.) GO TO 5
                                                                                     9078136
    7 TH=THOVAL * ASIN(CWATER/CBOT)
                                                                                     BOTR137
      OZACTU-SMALLR+COS(TH)/SIN(TH)
                                                                                     BOTR138
                                                                                     BOTR139
       0=2. +BIGH-DGAU-DZACTU
       IF (BIGH-D) 8.9,9
                                                                                     BOTR140
    B D = RIGH
                                                                                     BOTR141
      DGAU = BIGH - DZACTU
                                                                                     BOTR142
    9 WRITF (6,537)
                                                                                     BOTR143
       WRITE (6,512) DGAU
                                                                                     BOTR144
       WRITE (6,513) D
                                                                                     BOTR145
                                                                                     BOTR146
C
       GEOMFTRY
    5 SMALLH=BIGH=D
                                                                                     BOTR147
                                                                                     60TR148
C
       -RACTU- IS THE SLANT DISTANCE BETWEEN CHARGE AND GAGE.
                                                                                     BCTR149
C
C
                                                                                     BOTR150
       RACTII # SQRT ((D-DGAU) ##2+SMALLR##2)
                                                                                     BOTR151
                                                                                     BOTR152
Ç
C
           CALCULATE HYDRUSTATIC PRESSURE -PH-
                                                                                     BOTR153
       PH=-14.7#DGAU/33.0-14.7
                                                                                     BOTR154
C
                                                                                     BOTR155
```

```
-RS- IS THE REDUCED ARRIVAL TIME OF ACOUSTIC SURFACE REFLECTION.
                                                                             BOTR156
C
                                                                             BOTR157
       RS=SQRT(SMALLR**2+(D+DGAU)**2)/RACTU
                                                                             BOTR158
C
                                                                             BOTR159
      EXPONENTIAL PULSE PEAK PRESSURE AND TIME CONSTANT CALCULATED
C
                                                                             BOTR160
C
                                                                             BOTR161
      W13R=WCH++(1./3.)/RACTU
                                                                             BOTR162
      REDR=1./W13R
                                                                             BOTR163
      THEYA=THECOE*(W13R)**(1.+THEEXP)*CWATER
                                                                             30TR164
      PACT=PRECOE+(W13R) ++PREEXP
                                                                             BOTR165
      TACT=RACTU/CWATER
                                                                             BOTR166
      THET=THETA+TACT+1000.
                                                                             SOTR167
                                                                             BOTR168
      IF (SLOPE .EQ. 0.) GO TO 10005
                                                                             BOTR169
      CHANGE OF GEOMETRY FOR SLOPING BOTTOM
C
                                                                             BOTR170
                                                                             BOTR171
C
      A = SLOPE/57.29578
                                                                             BOTR172
      HG = BIGH-DGAU
                                                                             BOTR173
      H1 = SMALLH+COS(A)
                                                                             BOTR174
      H2 = (HG=SMALLR*TAN(A))*COS(A)
                                                                             BOTR175
      IF((H2.LT.0.0).OR.(SMALLR*TAN(A).GT.BIGH)) WRITE(6,555)
                                                                             BOTR176
      WRITE (6,514) SMALLR
                                                                             BOTR177
      WRITE (6+574)
                                                                             BOTR178
      SMALLR=SMALLR+COS(A)+(D-DGAU)+SIN(A)
                                                                             BOTR179
      SMALLH = H1
                                                                             BOTR180
      IF (H2 .GT. H1) D=D+H2-H1
                                                                             BOTR181
      DGAU = D+H1-H2
                                                                             BOTR182
      BIGH = D+H1
                                                                             BOTR183
      WRITE (6,511) BIGH
                                                                             BOTR184
      WRITE (6.512) DGAU
                                                                             BOTR185
10005 DEZERO = D-DGAU
                                                                             BOTR186
      DZACTU=2. *SMALLH+DEZERO
                                                                             BOTR187
      RZACTU=SQRT (DZACTU**2+SMALLR**2)
                                                                             BOTR188
C
                                                                             BOTR189
C
      INITTALITATIONS
                                                                             BOTR190
                                                                             BOTR191
                                                                             BOTR192
 1040 FI=0.
                                                                             BOTR193
      VMID=0.
                                                                             BOTR194
      PRE=n.
                                                                             BOTR195
      IPEL
      NPE4
                                                                             BOTR196
      ZZDT=4.
                                                                             BOTR197
                                                                             BOTR198
      RESIDED. 0
                                                                             BOTR199
      EFLUY=G.
      FIMP=0.
                                                                             BOTR200
      POSIMPEO.
                                                                             BOTR201
                                                                             BOTR202
      IPRES==1
      PPRE=6.
                                                                             BOTR203
      XPPRF=1.
                                                                             80TR204
                                                                             BOTR205
      PMIDEO.
      XPMIned.
                                                                             BOTR206
      PD=0.
                                                                             BOTR207
                                                                             BOTR208
      PS=0
      POOT=0.
                                                                             BOTR209
                                                                             BOTR210
Ċ
      BASIC CONSTANTS OF GROUND WAVE
                                                                             BOTR211
                                                                             BOTR212
      CTWO=CWATER/CBGT
                                                                             BOTR213
                                                                             BOTR214
      R2=R2ACTU/RACTU
      THET ARETHETA/R2##THEEXP
                                                                             BOTR215
      THETO=THET/R2**THEEX
                                                                             BOTR216
                                                                             BOTR217
      PACTC=R2++FREEXP/R2
                                                                             BOTR218
      RI=RS##PREEXP
      THETER=THETA/RI##THEEXP
                                                                             BOTR219
```

```
D2=D2ACTU/RACTU
                                                                             BOTR220
      SINTH=SMALLR/(RACTU*R2)
                                                                             BOTR221
                                                                             BOTR222
      COSTH=D2/R2
                                                                             BOTR223
      COSRM=COSTH/R2
      IF (CTWO.GE.SINTH) GO TO 2000
                                                                             BOTR224
                                                                             BOTR225
      GAM=CQRT(1.-CTWO**2)
      DZRZ=RZ+(CTWO+SINTH+GAM+COSTH)
                                                                             BOTR226
                                                                             BOTR227
      GO To 2005
                                                                             BOTR228
2000 D2R2*R2
C
                                                                             BOTR229
      CALCHLATION OF NEW DURATION IF OURAT IS READ IN NEGATIVE.
                                                                             BOTR230
C
      (DURAT IS EXPLAINED IN CARDS BOTRO28-32.)
                                                                             BOTR231
2005 IF (XDURAT.LT.O.) DURAT = (R2-1.)/THETA-XDURAT
                                                                             BOTR232
      TSTOP=1.+DURAT+THETA
                                                                             BOTR233
                                                                             B0TR234
C
      SINAL =CWATER/CBOT
                                                                             BOTR235
                                                                             BOTR236
      SINZAL=SINAL++2
                                                                             BOTR237
      IF (SIN2AL-1.)811,811,812
                                                                             BOTR238
  811 COSAL=SQRT(1.-SINZAL)
                                                                             BOTR239
      GO TO 813
                                                                             BOTR240
  812 COSAL==0.
                                                                             BOTR241
  813 SIN2TH=SINTH**2
                                                                             BOTR242
      IF (CSHEAR) 15 . 15 . 14
                                                                             BOTR243
   14 SINBE=CWATER/CSHEAR
                                                                             BOTR244
      SIN2BE=SINBE**2
                                                                             BOTR245
   15 THE=57.2958* ASIN(SINTH)
                                                                             BOTR246
C
                                                                             BOTR247
C
      CALCULATION OF PLANE WAVE REFLECTION COEFFICIENT. PHASE SHIFT.
                                                                             BOTR248
C
                                                                             BOTR249
      AND ANGLE OF S-WAVE.
C
                                                                             BOTR250
C
                                                                             BOTR251
      IF (CSHEAR) 30,30,50
                                                                             BOTR252
C
      CALCULATION FOR BOTTOM WITH NO SHEAR STRENGTH (NON-RIGID)
                                                                             BOTR253
                                                                             BOTR254
C
                                                                             BOTR255
   30 IF($\N2TH-SIN2AL)33,32,31
                                                                             BOTR256
C
      SUPERCRITICAL REFLECTION (ANGLE OF INCIDENCE GREATER THAN THE
                                                                             BOTR257
C
                                                                             BOTR258
      CRITICAL ANGLE)
C
                                                                              BOTR259
                                                                             BOTR260
   31 E=ATAN (B+SQRT (SIN2TH-SIN2AL)/COSTH)
                                                                              BOTR261
      CR=1.
                                                                              BOTR262
       IICA=1
                                                                              BOTR263
      GO TO 88
                                                                              BOTR264
   32 E2=0.
                                                                              BOTR265
       CR=1.
                                                                              BOTR266
       IICA=2
                                                                              BOTR267
       GO TO 89
                                                                              BOTR268
C
       SUBCRITICAL REFLECTION (ANGLE OF INCIDENCE LESS THAN THE
                                                                              BOTR269
C
                                                                              BOTR270
       CRITICAL ANGLE)
                                                                              BOTR271
                                                                              BOTR272
   33 E2=0.
                                                                              B07R273
       AT=COSTH/(SQRT(SINZAL-SINZTH)+B)
                                                                              BOTR274
       CR=(AT-1.)/(AT+1.)
                                                                              BOTR275
       IICA=3
                                                                              BOTR276
       GO TO 89
                                                                              BOTR277
C
                                                                              BOTR278
       CALCULATION FOR BOTTOM WITH SHEAR (RIGID)
 Č
                                                                              BOTR279
                                                                              BOTR280
    50 CA=COSTH*(1.-2.*SIN2TH/SIN2BE) **2/B
                                                                              90TR281
       CB=4.*COSTH*SIN2TH*(SIN2BE-SIN2TH)/B/SIN2BE**2
                                                                              BOTR282
       IF (SIN2TH-SIN2AL) 60,32,51
                                                                              BOTR283
    51 ATA=CA/SQRT(SIN2TH=SIN2AL)
```

```
IF (SINTH-SINBE) 52,55,57
                                                                                BOTR284
   52 BT=CB/SQRT(SI*12BE-SIN2TH)
                                                                                BOTR285
       CR=SQRT((ATA+>2+(BT-1.)++2)/(ATA++2+(BT+1.)++2))
                                                                                BOTR286
      EASATAN((1.-BT)/ATA)
                                                                                BOTR287
      EB=ATAN((1.+BT)/ATA)
                                                                                BOTR288
      E2=EA+EB
                                                                                BOTR289
       IICA=4
                                                                                BOTR290
      60 TO 89
                                                                                BOTR291
   55 BTA=0.
                                                                                BOTR292
      GO TO 58
                                                                                BOTR293
¢
                                                                                BOTR294
   57 BTA=CB/SQRT(SIN2TH-SIN2BE)
                                                                                80TR295
   SB E=ATAN(1./(ATA+BTA))
                                                                                BOTR296
      CR=1.
                                                                                B01R297
      IICA=6
                                                                                BOTR298
      GO TO 88
                                                                                BOTR299
                                                                                BOTR300
   60 E=0.
                                                                                BOTR301
      AT=CA/SQRT (SINZAL=SIN2TH)
                                                                                BOTR302
      BT=CB/SQRT(SIN2BE-SIN2TH)
                                                                                BOTR303
      CR=(AT+BT-1.)/(AT+BT+1.)
                                                                                BOTR304
      IICA=7
                                                                                BOTR305
C
                                                                                BOTR306
   88 E2=2.*E
                                                                                BOTR307
   89 EE=57.2958+E2
                                                                                B0TR308
      IF (CRHEAR.LE.O.) GO TO 92
                                                                                BOTR309
   90 IF (SINTH-SINBE) 91,91,92
                                                                                BOTR310
   91 GAMMA= ASIN(SINTH/SINBE)
                                                                                BOTR311
      ANGA=57.2956+GAMMA
                                                                                BOTR312
      60 To 95
                                                                                BOTR313
C
                                                                                BOTR314
   92 ANGA==0.
                                                                                BOTR315
C
                                                                                BOTR316
      ANGLE OF P-WAVE
                                                                                BOTR317
   95 IF (SINTH-SINAL) 293, 293, 294
                                                                                BOTR318
  293 THONE=57.2958+ ASIN(SINTH/SINAL)
                                                                                80TR319
      GU Tn 295
                                                                                BOTR320
  294 THONE == 0.
                                                                                BOTR321
                                                                                BOTR322
      FORMATS ARE LISTED AT THE END OF THE PROGRAM. CARDS BOTR907-1042
                                                                                BOTR323
  295 WRITF (6,514) SMALLR
                                                                                BOTR324
      WRITF (6,504) WCH
                                                                                BOTR325
      WRITF (6,505) CWATER
                                                                                BOTR326
      WRITE (6,506) CBOT
                                                                                BOTR327
      WRITF (6,546) CSHEAR
                                                                                BOTR328
      WRITF (6.507) RHOWAT
                                                                                BOTR329
      WRITF(6,508)RHOBOT
                                                                               BOTR330
      WRITF (6,515) PRECOE
                                                                               BoTR331
      WRITF (6.503) 25
                                                                               BOTR332
      WRITF(6,516)PREEXP
                                                                                BOTR333
      WRITE (6,517) THECOE
                                                                                BOTR334
      WRITE (6.418) THEEXP
                                                                               BOTR335
      WRITE (6.519) STEPS
                                                                               BOTR336
      WRITE (6,509) DURAT
                                                                               BOTR337
      WRITE (6.538) THOVAL
                                                                               BOTR338
      WRJTF (6.584) X1
                                                                               BOTR339
      WRITF (6.585) X2
                                                                               BOTR340
      WRITE (6.500) SLOPE
                                                                               BOTR341
      WRITE(6.586) Z1
WRITE(6.587) Z2
                                                                               BOTR342
                                                                               90TR343
      WRITE (6.588) 73
                                                                               BOTR344
      WRITE (6.568) RADIUS
                                                                              BOTR344A
      WRITF(6.569) APRINT
                                                                              BOTR344B
      WRITF (6,520)
                                                                               BOTR345
```

```
BOTR346
      WRITE (6.521) THE
      WRITE (6.573) CSTON
                                                                               BOTR347
                                                                               BOTR348
      WRITE (6.545) POISR
      WRITE (6.547) RS
                                                                               BOTR349
                                                                               BOTR350
C
                                                                               BOTR351
      IF (1,=SINAL)17.16,16
   16 ALPHA=57.2958* ASIN(SINAL)
                                                                               BOTR352
      WRITE (6.522) ALPHA
                                                                               BOTR353
                                                                               BOYR354
      GO TU 18
   17 WRITE (6.541)
                                                                               BOTR355
                                                                               BOTR356
   18 IF (CSHEAR) 49.49.45
                                                                               BOTR357
   45 IF (1.-SINBE) 47.46.46
                                                                               BOTR358
   46 BETHA=57.2958* ASIN(SINBE)
                                                                               BOTR359
      WRITE (6.542) BETHA
                                                                               BOTR360
      ARRIVAL TIME OF CRITICALLY REFRACTED SHEAR WAVE
                                                                               BOTR361
                                                                               BOTR362
                                                                               BOTR363
      IF (STNTH.LT.SINBE) .SHD2R2=0.
      IF (SINTH.GE.SINBE ) SHD2H2=(SMALLR*SINBE+02ACTU*SQRT(1.-SIN2BE)) BOTR364
     1 /RACTE
                                                                               BOTR365
                                                                               BOTR366
      WRITF (6.579) SHD2R2
                                                                               BOTR367
C
                                                                               BOTR368
      GD Tn 49
                                                                               BOTR369
   47 WRITF (6.543)
                                                                               BOTR370
   49 WRITF (6,597) THONE
                                                                               BOTR371
      WRITF (6.592) CR
      WRITE (6.594) ANGA
                                                                               BOTR372
                                                                               BOTR373
      WRITF (6,593) EE
                                                                               BOTR374
      WRITF (6.523) DZR2
                                                                               BOTR375
      WRITE (6.533) R2
                                                                               BOTR376
      WRITE (6.525) RACTU
                                                                               BOTR377
      WRITE(6.502) REDR
      WRITE (6.526) TACT
                                                                               EOTR378
                                                                               BOTR379
      WRITE (6,527) PACT
                                                                               BOTR380
      WRITE (6.528) THETA
                                                                               60TR3A1
      WRITE (6.539) THET
      WRITE (6.548) THETAR
                                                                               BOTRBAZ
                                                                               BOTR383
      WRITE (6,549) THETH
                                                                               BOTR384
      WRITE (6.535)
      WRITE (6.55) SMALLH. OEZERO. DZ. COSAL. COSTH. SINTH
                                                                               BOTR3A5
                                                                               BOTR386
      WRITF (6.532)
      FORMATS ARE LISTED AT THE END OF THE PROGRAM. CARDS BOTR907-1042
                                                                               BOTR3A7
                                                                               BOTR3A8
                                                                               BOTR3A9
      SELECTION OF THE THEORY
C
                                                                               BOTR390
Ċ
                                                                               BOTR391
      Z1=0.
             ROSENBAUM METHOD
             PLANE WAVE APPROXIMATION
                                                                               BOTR392
      Z1=1.
             NOT USED IN THE PRESENT PROGRAM
                                                                               BOTRS 13
C
      21=2.
                                                                               60TR394
C
      71=3. COMPLEX ARITHMETIC METHOD
                                                                               BOTR395
                                                                               BOTR396
      Z1=A95(Z1)
                                                                               BOTR397
      IF (Z1=1.)800.801.802
                                                                               BOTR398
  802 IF (Z1-3.) 803.804.805
                                                                               BOTR399
C
                                                                               BOTR400
C
      SPHERICAL WAVE CAGNIARD-ROSENBAUM THEORIES
                                                                               BOTR401
C
                                                                               BOTR402
  800 WRITE (6,567)
                                                                               BOTR463
      IF (CCHEAR) 820 . 820 . 821
                                                                               BOTR404
                                                                               BOTR405
C
      NON-DIGIO BOTTOM
                                                                               BOTR406
  870 IF(STNAL-1.)830.831.832
                                                                               BOTR407
C
                                                                               BOTR408
      FAST BOTTOM
C
                                                                               BOTR4n9
  930 WRITE (6,560)
```

```
GO TO 11
                                                                             BOTR410
  C
  C
        SLOW BOTTOM
                                                                            BOTR411
    832 WRITE (6.561)
                                                                            BOTR412
        GO TO 11
                                                                            BOTR413
  C
                                                                             BOTR414
  C
       NO REFLECTION
                                                                            BOTR415
   831 WRITE (6.599)
                                                                            BOTR416
                                                                            BOTR417
       GO TO 4
 ť
                                                                            BOTR418
 C
       RIGID BOTTOM
                                                                            BOTR419
   821 IF (SINBE-1.)841,841.840
                                                                            BOTR420
                                                                            BOTR421
 C
 C
       FAST SHEARWAVE
                                                                            BOTR422
   841 WRITE (6.562)
                                                                            BOTR423
       GO TO 11
                                                                            BOTR424
 C
                                                                            BOTR425
 C
       SLOW SHEARWAVE
                                                                            BOTR426
   840 WRITE (6,563)
                                                                            BOTR427
       GO TO 11
                                                                            BOTR428
 C
                                                                            BOTR429
                                                                            BOTR430
 C
       PLANE WAVE APPROXIMATION
   801 WRITE (6,565)
                                                                            BOTR431
                                                                            BOTR432
       GO TO 998
 C
                                                                            BOTR433
 Ċ
       Z1 = 2. IS NOT NEEDED FOR THE PRESENT PROGRAM
                                                                            BOTR434
                                                                            BOTR435
   An3 WRITF (6.599)
                                                                            BOTR436
       60 Tn 4
                                                                            BOTR437
 C
                                                                            BOTR438
                                                                           BOTR4 39
 C
 C
       COMPLEX ARITHMETIC METHOD
                                                                            BOTR440
C
                                                                            BOTR441
  804 WRITE (5.566)
                                                                           BOTR442
Ç
                                                                           BOTR443
C
      CONSTANTS FOR SUBROUTINE SEVEN
                                                                           BOTR444
                                                                           POTR445
      CZ=CWATER##2
      CBOTP=CBOT##2
                                                                           BOTR446
      CSHR2=CSHEAR##2
                                                                           BOTR447
                                                                           BOTR448
      SINTH2=SINTH##2
      CHSH=-4. +CSHEAR++3/CBOT
                                                                           BOTR449
      C2SHD2=2. +CSHEAR++2
                                                                           BOTR450
      C4C8=C2++2/C8OT+8
                                                                           BOTR451
                                                                           BOTR452
      60 Tn 11
C
                                                                           BOTR453
      Z1=4. IS NOT NEEDED FOR PRESENT PROGRAM
                                                                           BOTR454
  805 WRITF (6,599)
                                                                           BOTR455
      GO TO 4
                                                                           BOTR456
C
                                                                           BOTR457
    C
                                                                           BOTR458
C
                                                                           BOTR459
C
                                                                           BOTR460
                                                                           BOTR461
      SPHEDICAL WAVE CAGNIARD-ROSENBAUM PRESSURE-TIME CALCULATIONS
C
                                                                           BOTR462
                                                                           BOTR463
C
C
                                                                           BOTR464
C
                                                                           BOTR465
                                                                           BOTR466
      PHASES AND TIME STEPS
C
                                                                           BOTR467
  11 IF(0>R2=D2)10+20+20
                                                                          BOTR468
                                                                          80TR469
     ANGLE OF INCIDENCE GREATER THAN CRITICAL
                                                                          BOTR470
  10 ME (RO-CZRZ) STEPS/THEYA/4.
                                                                          BOTR471
     IF (()282-1.0).GT.0.) M=(R2-1.0) *STEPS/THETA/4.
                                                                          BOTR472
                                                                          BOTR473
```

```
BOTR474
      M=4+M+5
      CALCULATE DT. INCREMENT OF REDUCED TIME T
                                                                             BOTR475
C
                                                                             BOTR476
   12 DT=(R2-D2R2)/FLOAT(M)/2.
                                                                             BOTR477
      IF((D2R2-1.0).GT.0.) DT=(R2-1.0)/FLOAT(M)/2.
                                                                             BOTR478
      DT1=DT
                                                                              BOTR479
      DTACT=2. *DT*TACT/3.
                                                                              BOTR460
      DST=DT/3.
                                                                              BOTR481
      EDT=EXP(-DT/THETAR)
                                                                              BOTR482
      WRITE (6,536) DT .EDT
                                                                              BOTR483
      WRITE (6.532)
      FORMATS ARE LISTED AT THE END OF THE PROGRAM, CARDS BOTR907-1042
                                                                              BOTR484
C
      -Z5- IS THE PRINTOUT CONTROL PARAMETER. IF -Z5- GREATER THAN
                                                                              BOTR485
      ZERO A SHORTER PRINTOUT HESULTS, IF -Z5- EQUALS ZERO THE NORMAL.
C
                                                                              BOTRARS
C
                                                                              BOTR487
      LONGER PRINTOUT IS GENERATED.
Č
                                                                              BOTR488
                                                                              BOTR489
       IF (75.61. 0.0) 60 TO 103
                                                                              BOTR490
       WRITE (6.530)
                                                                              BOTR491
       60 To 100
                                                                              BOTR492
  103 WRITE (6.501)
                                                                              BOTR493
       GO To 100
                                                                              BOTR494
C
       ANGLE OF INCIDENCE LESS THAN OR EQUAL TO CRITICAL
                                                                              BOTR495
C
                                                                              BOTR496
C
                                                                              BOTR497
    20 MM=(92=1.) #STEPS/THETA
                                                                              BOTR498
       MM=2+MV+4
                                                                              BOTR499
       CALCULATE DT. INCREMENT OF REDUCED TIME T
C
                                                                              BOTH500
       DT=(92-1.)/FLOAT(MM)
                                                                              BOTRS01
       DTACT=2.*DT*TACT/3.
                                                                              BOTR502
       OST=DT/3.
                                                                              BOTR503
       EDT=EXP(-DT/THETAR)
                                                                              BOTR504
       WRITE (6.536) DT.EDT
                                                                              BOTR505
       WRITE (6,532)
                                                                               BOTR506
       IF (Z5.GT.0.0) GO TO 104
                                                                               80TR507
       WRITF (6.530)
                                                                               BOTR508
       60 To 706
                                                                               BOTR509
   104 WRITF (6.501)
                                                                               BOTR510
       GO TO 700
                                                                               BOTR511
 C
       ANGLE OF INCIDENT WAVE LARGER THAN CRITICAL
                                                                               80TR512
 C
                                                                               BOTR513
       RZ LARGER THAN DZRZ
 C
                                                                               BOTR514
 C
                                                                               BOTR515
   100 IF (DaR2-0.9999)101-102-102
                                                                               BOTR516
 Ç
                                                                               BOYR517
       PRECURSOR ARRIVES BEFORE DIRECT WAVE
 C
                                                                               BOTR518
                                                                               BOTR519
 C
   101 T=D2R2
                                                                               BOTR520
        STPW=0.
                                                                               BOTR521
                                                                               BOTR522
        N=10
        GO TO 72
                                                                               BOTR523
        PRESSURE CALCULATION IF DIRECT WAVE ARRIVES BEFORE PRECURSOR
                                                                               BOTR524
 C
                                                                               BOTR525
 C
                                                                               BOTR526
 C
    102 T=1.0
                                                                               BOTR527
        STPW=0.
                                                                                BOTR528
        N=1
                                                                                BOTR529
        GO TO 71
                                                                                BOTR530
    110 N=12
                                                                                BOTR531
    114 T=T+2.#DT
                                                                                BOTR532
        IF (T.LT.D2R2) GO TO 71
                                                                                BOTR533
    117 T=D2R2
                                                                                POTR534
        WRITE (6.534)
                                                                                BOTR535
        N=11
                                                                                BOTR536
        GO TO 71
                                                                                BOTRS37
  C
```

```
ROTR53A
      CALCULATION OF THE PRECURSOR
                                                                              BOTR539
                                                                              BOTR540
  150 N=2
                                                                              BOTR541
 152 T=T+DT
                                                                              BOTR542
      CALL STPWA (T. VMID. Z1, NP)
      EVERY FIFTH STEP RECALCULATE STPW WITH TWICE THE INTEGRATION
                                                                              BOTR543
C
                                                                              BOTR544
      POINTS.NP. TO CHECK THE INTEGRATION ERROR.
                                                                              BOTRS45
      IF (MOO(IP+5) .NE.0) GO TO 155
                                                                              BOTRS46
      IF (NP.EQ.16) GO TO 155
                                                                              BOTR547
      NP2#3#NP
                                                                              BOTRS48
      CALL STPWA(T,VMID2,Z1,NP2)
                                                                              BOTR549
      ERROR=ABS ((VMID+VMID2)/VMID2)
                                                                              90TR550
      IF (ERROR.LT.0.005) GO TO 155
      DOUBLE NUMBER OF INTEGRATION POINTS
                                                                              BOTR551
C
                                                                              ROTRS52
      NP=NP2
                                                                              BOTR553
      VMID=VMID2
                                                                              ROTR554
  155 T=T+DT
                                                                              BOTR555
      CALL STPWA(T+STPW+Z1+NP)
                                                                              ROTRS56
      FImFI +EDT ++2+ ((PRE +EDT +4. +VMID) +EDT +STPW) +DST
                                                                              BOTR557
      PRF=STPW
                                                                              BOTRS58
  GO TO 70
159 IF((IPRES.LT.0).OR.(T.LT.(R2-6.1*DT))) GO TO 150
                                                                              80TR559
                                                                              BOTR560
C
                                                                              BOTR561
      CALCULATION OF PRECURSOR NEAR SINGULARITY
                                                                              ROTR562
C
                                                                              BOTR563
  200 DT=DT/ZZDT
                                                                              80TR564
      M=(R2-T)/DT/4.
                                                                              BOTR565
      M=4+M+5
                                                                              ROTRS66
      DT=(R2-T)/FLOAT(M)/2.
                                                                              50TR567
      DTACT=2. *DT*TACT/3.
                                                                              807R568
      DST=DT/3.
                                                                              BOTR569
      EOT=EXP(=DT/THETAR)
                                                                              30TR570
      N=9
  201 IF((IPRES.LT.0).OR.(T.LT.(P2-3.1*DT))) GO TO 152
                                                                              BOTR571
                                                                              BOTR572
      TR1=T/R2
                                                                              ROTR573
      V=SQRT(1.-TR1++2)
                                                                              BOTR574
      DSV=V/12.*R2
                                                                              BOTR575
      TR2=SQRT(1.-(0.75*V)**2)
                                                                              BOTR576
      TR3=SQRT(1.-(0.5*V) **2)
                                                                              BOTRS77
      TR4=SQRT(1.=(0.25*V)**2)
                                                                              BOTR578
      Tlat
                                                                              BOTR579
      T2=R2*TR2
                                                                              BOTR580
      T3=R2*TR3
                                                                              BOTR581
      T4=R2+TR4
      EDT1=EXP(-(T3-T1)/THETAR)
                                                                              BO1 R582
                                                                              BOTE 83
      EDT2=EXP (- (13-T2)/THETAR)
                                                                              ROTR584
      EDT3=EXP(-(R2-T3)/THETAR)
      EDT4=EXP(-(R2-T4)/THETAR)
                                                                              BOTR585
                                                                              BOTR586
C
  202 CALL STPWA (72, VMID. 21.16)
                                                                              BOTR587
      CALL STPWA (73.STPW.Z1.16)
                                                                              BOTR588
      FI=FI+EDT1+(PRE+EDT1+V/TR1+3.+VMIO+EDT2+V/TR2+STPW+0.5+V/TR3)+DSV
                                                                              80TR589
                                                                              ROTR590
C
                                                                              BOTR591
      PRE-STPW
                                                                              BOTR592
      T=T3
                                                                              80TR593
      N=3
                                                                              BOTR594
      GO TO 70
                                                                              BOTR595
  210 CALL STPWA (T4, VMID, Z1, 16)
                                                                              80TR596
      FI=FI+EDT3+(PRE+EDT3+0.5+V/TR3+VM10+EDT4+V/TR4)+DSV
                                                                              AUTR597
                                                                              BOTR598
      PREBO.
                                                                              ROTR599
      T=R2
                                                                              BOTR600
      STPW=CR+(1.E+30) +SIGN(1.+EE)
                                                                              ROTR601
      WRITE (6,540)
```

```
N=4
                                                                              BOTR602
      GO TO 70
                                                                              BOTR603
C
                                                                              BOTR604
                                                                              BOTR605
C
      CALCULATION OF MAIN BOTTOM REFLECTION NEAR SINGULARITY
                                                                              BOTR606
C
                                                                              BOTR607
  300 IF(DT.GT.(DT1/ZZDT/2.)) GC TO 301
                                                                              BOTR608
      DT=DT1/ZZDT/2.
                                                                              BOTR609
      DTACT=2.*DT*TACT/3.
                                                                              BOTR610
      DST=DT/3.
                                                                              BOTR611
      EDT=EXP(-DT/THETAR)
                                                                              BCTR612
      NP=16
                                                                              BOTR613
  301 T6=R2+4.*DT1
                                                                              BOTR514
      DTR=DT/R2
                                                                              BOTR615
      U=SQRT((1.+2.+DTR)++2-1.)
                                                                              BOTR616
      DSU=U/12. +R2
                                                                              BOTR617
C
                                                                              BOTR618
      TR2=SQRT(1.+(0.25*U)**2)
                                                                              BOTR619
      TR3=SQRT(1.+(0.50#U)##2)
                                                                              BOTR620
      TR4=SQRT(1.+(0.75+U)++2)
                                                                              BOTR621
      TR5=1.+2.*DTR
                                                                              BOTR622
      T2NTR2#R2
                                                                              BOTR623
      T3=TR3*R2
                                                                              BOTR624
      T4=TR4*R2
                                                                              BOTR625
      T5=TR5+R2
                                                                              BOTR626
C
                                                                              BOTR627
      EDT1=EXP(-(T3-R2)/THETAR)
                                                                              BOTR628
      EDT2=EXP(-(T3-T2)/THETAR)
                                                                              BOTR629
      EDT3=EXP(-(T5-T3)/THETAR)
                                                                              BOTR630
      EDT4=EXP(-(T5-T4)/THETAR)
                                                                              BOTR631
                                                                              BOTR632
  302 CALL STPWB(T2, VMID, Z1, 16)
                                                                              BCTR633
      CALL STPWB (T3,STPW,Z1,16)
                                                                              BOTR634
      FI=FI*EDT1+(VMID*U*EDT2 /TR2+STPW*0.5*U/TR3)*DSU
                                                                              HOTR635
      PRE=STPW
                                                                              BOTR636
                                                                              ROTR637
      T=T3
      N=5
                                                                              BOTR638
      GO TO 71
                                                                              BOTR639
                                                                              BOTR640
  305 CALL STPWB(T4,VMID.Z1,16)
                                                                              BOTR641
      CALL STPWB (T5, STPW, Z1, 16)
                                                                              BOTR642
      FI=FI+EDT3+(0.5*PRE+U+EDT3/TR3+3.*VMID+U+EDT4/TR4+STPW+U/TR5)+DSU
                                                                              BOTR643
      PRE=STPW
                                                                              BOTR644
      T=15
                                                                              BOTR645
      N=6
                                                                              BOTR646
      GO TO 71
                                                                              BOTR647
                                                                              BOTR648
  308 N=13
                                                                              BOTRA49
      DTACT=2. *TACT*DT/3.
                                                                              BOTR650
  310 IF((IFRES.LT.0).OR:(T.LT.T6)) GO TO 410
                                                                              BOTR651
  320 DT=DT1
                                                                              BOTR652
      DTACT=2.*DT*TACT/3.
                                                                              BOTR653
      DST-DT/3.
                                                                              BOTR654
      EDT=EXP(-DT/THETAR)
                                                                              BOTR655
C
                                                                              BOTR656
                                                                              HOTR657
      CALCULATION OF MAIN BOTTOM REFLECTED WAVE
                                                                              BOTR658
                                                                              BOTR659
  400 N=7
                                                                              BOTR660
  410 T=T+DT
                                                                              80TR661
      CALL STPWB(T.VHID.Z1.NP)
EVERY TENTH STEP RECALCULATE STPW WITH HALF THE INTEGRATION
                                                                              ROTR662
C
                                                                              BOTR663
      POINTS NP. IF ERROR IS LESS THAN .005 REDUCE NP BY HALF.
                                                                              ROTR664
C
      IF (MOD (IP+10), EQ+0) GO TO 415
                                                                              BOTR665
```

```
IF (NP.EQ.4) GO TO 415
                                                                                BOTR666
      NP2=NP/2
                                                                                BOTR667
      CALL STPWB (T+VMID2+Z1+NP2)
                                                                                BOTR668
      ERROR=ABS ( (VMIL-VMID2) /VMID)
                                                                                BOTR669
      IF (ERROR.LT.0.005) NP=NP2
                                                                                BOTR670
  415 TET+DT
                                                                                BOTR671
      CALL STPWB (T.STPW.Z1.NP)
                                                                                BOTR672
      FI=FI+EDT++2+((PRE+EDT+4.+VMID)+EDT+STPW)+DST
                                                                                BOTR673
      PRESTPW
                                                                                BOTR674
      GO TO 71
                                                                                BOTR675
C
                                                                                BOTR676
      CALCULATION OF BOTTOM REFLECTION FOR TIMES LESS THAN OR EQUAL TO
C
                                                                                BOTR677
      THE ARRIVAL TIME OF THE PEAK IF THE ANGLE OF INCIDENCE IS LESS
C
                                                                                80TR678
C
      THAN OR EQUAL TO THE CRITICAL ANGLE. THE DIRECT WAVE ARRIVES BEFORE OR TOGETHER WITH THE BOTTOM REFLECTION.
                                                                                BOTRA79
                                                                                BOTR680
                                                                                BOTR681
  700 T=1.0
                                                                                BOTR682
      N=A
                                                                                BOTR683
  707 STPW=0.
                                                                                BOTR684
      GO TO 71
                                                                                BOTR685
  706 N=14
                                                                                80TR686
  708 T=T+DT+2.0
                                                                                BOTR687
      IF (T+2.0*DT.LE.R2) GO TO 71
                                                                                BOTR688
  710 T=R2
                                                                                BOTR689
      STPW=CR/R2
                                                                                BOTR690
      PRE=0.
                                                                                BOTR691
      WRITE (6.558)
                                                                                BOTR692
      NPSA
                                                                                BOTR693
                                                                                BOTR694
      N#7
      60 TO 71
                                                                                BOTR695
                                                                                BOTR696
C
                                                                                BOTR697
      CALCULATION OF DIRECT WAVE -PD-, BOTTOM REFLECTION -PBOT-,
                                                                                BOTR698
C
      SURFACE REFLECTION -PS- AND TOTAL PRESSURE -P- .
                                                                                ROTRAGG
                                                                                80TR700
   70 IF (T.LT.1.0) GO TO 72
                                                                                BOTR701
   71 PD=PACT*EXP((1.0-T)/THETA)
                                                                                BOTR702
      IF(T.LT.RS) GO TO 72
PS=-PACT/R1*EXP((RS-T)/THETSR)
                                                                                BOTR703
                                                                                BOTR704
   72 PB0T1=PB0T
                                                                                BOTR705
      FTHETA=FI/THETAR
                                                                                BOTR706
      PHOT=PACT/PACTC*(STPW-FTHETA)
                                                                                30TR707
   73 TIME=TACT+(T-1.0)
                                                                                BOTR708
      P= P0 + PS + P80T
                                                                                90TP709
C
                                                                                BOTR710
      TEST TO INSURE THAT THE ABSOLUTE PRESSURE (P+HYDROSTATIC) .GE. 0.
                                                                                BOTR711
C
                                                                                BOTR712
      PRAMAX1 (P.PH)
                                                                                BOTR713
      IF (T.GT.TSTOP) N=15
                                                                                BOTR714
                                                                                BOTR715
C
                                                                                BOTR716
      CALCULATION OF IMPULSE= FIMP AND ENERGY FLUX= EFLUX
                                                                                BOTR717
C
      CALCULATION OF POSITIVE IMPULSE= POSIMP
                                                                                BOTR718
                                                                                80TR719
C
 6004 XP=AMAX1 (P.O.)
                                                                                BOTR720
      GO TO (6030,6007,6020,6030,6040,6050,6007,6030,6007,
                                                                                BOTR721
     1 6030,6010,6007,6007,6007,6060),N
                                                                                BOTR722
 6007 IF([PRFS.LT.0) GO TO 6070
                                                                                BOTR723
      PMID=P
                                                                                80TR724
      XPMID=XP
                                                                                BOTR725
      GO TO 6090
                                                                                BOTR726
 6010 XXDT=TACT/3.*(T-TPRE)
                                                                                BOTR727
      FIMP=3.*(P+PPRE)*XXDT /2.+FIMP
                                                                                BOTR728
      POSIMP=3.*(XP+XPPRE) *XXDT/2.+POSIMP
                                                                                BOTR729
```

```
EFLUX=EFLUX=(ABS(P) *P+ABS(PPRF) *PPRE) *XXDT/2./RHOWAT/CWATER*3./
                                                                                  BOTR730
                                                                                  BOTR731
     1 2.3066
       THE CONVERSION FACTOR 2.3066 IS NECESSARY FOR EFLUX TO HAVE
                                                                                  BOTR732
      UNITS IN-PSI
                                                                                  BOTR733
                                                                                  BOTR734
      PPRE=P
                                                                                  ROTR735
      XPPRE=XP
      IPRES=1
                                                                                  ROTR736
      GO TO 6092
                                                                                  BOTR737
 6020 DTACT=2.0+DSV+TACT
                                                                                  BOTR738
      PPRE=PPRE#V/TR1
                                                                                  BOTR739
                                                                                  BOTR740
      XPPRE=XPPRE#V/TR1
                                                                                  BOTR741
      PMID=P*V/2,/TR3
                                                                                  BOTR742
      XPMID=XP*V/2./TR3
                                                                                  BOTR743
      GO TO 6090
                                                                                  BOTR744
 6030 PEND=0.
                                                                                  BOTR745
      XPEND=0.
 GO TO 6072
6040 DTACT=2.0*DSU*TACT
                                                                                  BOTR746
                                                                                  BOTR747
                                                                                  BOTR748
      PPRE=0.
      XPPRE=0.
                                                                                  BOTR749
                                                                                  BOTR750
      PMIn=P+U/2,/TR3
      XPMID=XP#U/2./TR3
                                                                                  BOTR751
      GO TO 6090
                                                                                  AOTR752
 6050 PEND=P#U/TR5
                                                                                  BOTR753
      XPEND=XP#U/TR5
                                                                                  BOTR754
                                                                                  BOTR755
      GO TO 6072
 6060 IF (IPRES-GT-0) GO TO 6010
                                                                                  BOTR756
 6070 PEND=P
                                                                                  BOTR757
                                                                                  BOTR758
      XPEND=XP
 6072 FIMP=FIMP+(PPRE+4.*PMID+PEND)*DTACT
                                                                                  BOTR759
      POSIMP=POSIMP+(XPPRE+4.*XPMID+XPEND)*DTACT
                                                                                  BOTR760
      EFLUX=EFLUX+(ABS(PPRE)+PPRE+4. *ABS(PMID) *PMID+ABS(PEND) *PEND) *
                                                                                  BOTR761
                                                                                  BCTR762
     1 DTACT/RHOWAT/CWATER/2.3066
                                                                                  BOTR763
      PPRFEP
      YOPRE=XP
                                                                                  ROTR764
 6090 IPPES==1*IPRES
                                                                                  AOTR765
 6092 IF (IPRES.GT.0) TPRE=T
                                                                                  BOTR766
      WHEN DERECT WAVE ARRIVAL TIME T=1.0. IN URDER TO PLOT THE INSTANTANEOUS RISE OF THE DIRECT SHOCK AT T=1.0. THE BOTTOM REFLECTION IS OBTAINED BY LINEAR INTERPOLATION. PLOT POINTS ARE
                                                                                  BOTR767
                                                                                  BOTR768
                                                                                  BOTR769
C
                                                                                  BOTR770
C
                                                                                  BOTR771
      THEN CALCULATED FOR THE TCP AND ROTTOM OF THE SHOCK FRONT.
      IF((IP.E0.1).OR.(IP.GT.1000)) GO TO 7002
                                                                                  BOTR772
                                                                                  BOTR773
      IF ( (TIME.GT.O.) . ANO. (XX (IP-1) .LT.O.)) GO TO 6095
                                                                                  BOTR774
      60 To 7002
                                                                                  BOTR775
 6095 XX(ID)=0.
      IF (T.NE.R2) PBOTD=PBOT1+XX(IP-1)+(PBOT-PROT1)/(XX(IP-1)-TIME+1.E6) BOTR776
      IF(T.EG.RZ) PBOTD=PBOT)
                                                                                  BOTR777
                                                                                  BOTR778
      YY(ID) =ANAX1 (PROTU.PH)
                                                                                  BOTR779
      XX(ID+1)=0.
                                                                                  BOTR780
       YY(ID+1) =AMAX1(PBOTD+PACT+PH)
                                                                                  BOTR781
      WRITE(6,559) YY(IP+1)
                                                                                  BOTR782
      TPsID+2
                                                                                  BOTR783
C
      PRINT FOUTINE
      FORMATS ARE LISTED AT THE END OF THE PROGRAM, CAPDS BOTR907-1042
                                                                                  BOTR784
                                                                                  BOTR785
 7002 7F (Z5.GT.0.0) GO TO 7003
      WRITE (6.551) T.STPW.FTHETA.PD.TIMF.P.FIMP
                                                                                  BOTR786
                                                                                  BOTR787
      WRITE (6,598) PROT, PS, VMID, PRE, EFLUX
                                                                                  BOTR788
      GO TO 7004
 7003 WRITE (6.551) T.PBOT, EFLUX.PD.TIME.P.FIMP
                                                                                  BOTR789
                                                                                  HOTR790
      GO TO 7005
                                                                                  BOTR791
      REDUCED IMPULSE
                                                                                  BOTR792
C
                                                                                  BOTR793
 7004 RFIMP=FIMP/W13R/RACTU
```

```
BOTR794
      REDUCED POSITIVE IMPULSE
C
                                                                          BOTR795
      RPOSIM=POSIMP/W13R/RACTU
                                                                          BOTR796
      REDUCED ENERGY FLUX
                                                                          BOTR797
C
      REFLUX=EFLUX/W13R/RACTU
                                                                           BOTR798
      WRITE(6,556) PESID.RFIMP.REFLUX.POSIMP.RPOSIM
                                                                           BOTR799
 7005 IF(IP.GT.1000) GO TO 999
                                                                           BOTR800
      XX(IP)=TIME+1.0E6
                                                                           BOTR801
      YY(IP)=P
                                                                           BOTR802
      IP=IP+1
      BUTTOM REFLECTION TIME AND PRESSURE STORED IN QX AND QY FOR
                                                                          BOTR802A
                                                                          BOTR8028
C
      PTV CALCULATION.
                                                                          BOTRBOZC
C
      IF (T.LT.D2R2) GO TO 7001
                                                                          BOTR802D
                                                                          BOTREOZE
      IPTV=IPTV+1
      QX(IPTV)=TACT+(T-D2R2)
                                                                          BOTRBC2F
      QY (IPTV) =AMAX1 (PBOT,PH)
                                                                           BOTR803
 7001 GO TO (110,159,210,300,305,308,410,706,201,159,159,114,
                                                                           BOTR804
                                                                           BOTR805
     1 310,708,999),N
                                                                           BOTR806
                                                                           BOTR807
C
  999 IPMAX=IP-1
                                                                           BOTR808
                                                                           BOTR809
C
      CALCOMP PLOT TAPE GENERATED IF Z3 = 0.
                                                                           BOTR810
C
                                                                           BOTR811
C
       IF (Z3.NE.O.) GO TO 997
      CALL PLOTI (XX.YY. IPMAX.X1.X2. ADATE. THE . WCH. CBOT. POISR. Z1)
                                                                           BOTR812
                                                                           BOTR813
   997 ICASE=ICASE+1
                                                                          BOTR813A
       CALCULATION OF INPUTS FOR SUBROUTINE PTV.
                                                                          BOTRA138
 C
       IF (RADIUS.LE.O.) GO TO 4
                                                                           BOTR813C
  1997 TIMER2=TACT+(R2-D2R2)
                                                                           BOTR813D
       XT3=TIMER2-2. +DT+TACT
                                                                           BOTR813E
       XT4=0.8*TIMER2
                                                                           BOTR813F
       XT5=QX (IPTV)
                                                                           BOTR813G
       IPTV=IPTV+1
                                                                           BOTR813H
       QX(IPTV)=1.0E20
                                                                           BOTR813I
       QY(IPTV)=0.
                                                                           BOTR813J
       COSA=COSTH+COS(A)+SINTH+SIN(A)
       CALCULATION OF PEAK TRANSLATIONAL VELOCITY (PTV).
                                                                           BOTR813K
       CALL PTV (TIMER2+XT3+XT4+XT5+RADIUS,30.+APRINT+COSA+RHOWAT+
                                                                           BOTR813L
 C
                                                                           BOTR813M
      1 CWATER, TIME1, PTV1, PTV2)
                                                                           BOTR813N
       IF (APRINT.GT.0.) WRITE (6.570) TIME1.PTV1.PTV2
                                                                            BOTR814
       GO TO 4
                                                                            80TR815
 C
                                                                    ***** BOTR816
     BOTR817
 C
 C
                                                                            ROTRALS
       PLANE WAVE APPROXIMATION USING EQUATIONS OF ARONS AND YENNIE
 C
                                                                            BOTR819
                                                                            BOTR820
 C
 CC
                                                                            BOTR821
                                                                            BOTR822
                                                                            BOTR823
 C
   998 IF(CSHEAR.GT.O.) GO TO 1005
                                                                            BOTR824
        WRITE (6.590)
                                                                            BOTR825
        GO TO 1007
                                                                             BOTR826
   1005 WRITE (6,596)
        FORMATS ARE LISTED AT THE END OF THE PROGRAM, CARDS BOTR907-1042
                                                                            BOTR827
  C
                                                                             BOTRA28
        SELECTION OF TIME STEP
  C
                                                                             BOTR829
  C
                                                                             BOTR830
   1007 WRITE (6.591)
                                                                             BOTR831
        IF (D3R2.GE.R2) GO TO 1020
                                                                             BOTR832
        CALCULATION OF TIME STEP FOR SUPERCRITICAL REFLECTION
                                                                             BOTR833
                                                                             BOTR834
   1010 M= (R2-D2H2) *STEPS/THETA/2.+1.0
                                                                             BOTR835
        M=2+M-1
                                                                             BOTRE36
        IF (M.LE.4) GO TO 1020
                                                                             BOTRA37
   1012 DT=(R2-D2R2)/FLOAT(M)
```

NGLTR 71-110

```
BOTR838
      IF (D2R2-1.)1014,1015,1015
                                                                             BOTR839
1014 T=D2R2
                                                                             BOTR840
      GO TO 1700
1015 T=1.
                                                                             BOTR841
                                                                             BOTR842
      GO TO 1700
                                                                             BOTR843
      CALCULATION OF TIME STEP FOR SUBCRITICAL REFLECTION
                                                                             BOTR844
                                                                             BOTR845
 1020 DT=THETA/STEPS
                                                                             BOTR846
      T=1.
 1700 IF (T.GE.1.0) GO TO 1731
                                                                             BOTR847
                                                                             891R848
 1730 SW=0.
                                                                             BOTRA49
      GO TO 1732
                                                                             BOTR850
                                                                             BOTR851
      INCIDENT (DIRECT) WAVE RESPONSE
                                                                             BOTR852
 1731 SW=EXP(-(T-1.0)/THETA)
                                                                             BOTR853
 1732 XE1=0.
                                                                             80TR854
      XEI=0.
                                                                             80TR855
      IF (E2.NE.O.) GO TO 1738
                                                                             BOTR856
 1733 IF (T.GE.R2) GO TO 1736
                                                                             80TR857
 1735 PRFL=0.
                                                                             80TR858
      GO TO 1745
                                                                             30TR859
      PRESSURE RESPONSE FOR SUBCRITICAL REFLECTION
                                                                             BOTRa60
                                                                             BOTR861
 1736 PRFL=CR+EXP(-(T-R2)/THETAR)
                                                                             BOTR862
      GO TO 1745
                                                                             BOTR863
 1738 TBTH=(T-R2)/THETAR
                                                                             BOTR864
      IF (TBTH) 1741,1742,1743
                                                                             BOTR865
1741 CALL EXEL (TBTH. XE1)
                                                                             BOTR866
      PRESSURE RESPONSE FOR PRECURSOR OF SUPERCRITICAL REFLECTION
                                                                             BOTR867
C
      PRFL=CR SIN(E2) *XE1/PI
                                                                             BOTR868
                                                                             BOTR869
      GO TO 1745
                                                                             BOTR870
      PRESSURE RESPONSE AT SINGULARITY
                                                                             BOTR871
                                                                             BOTR872
 1742 PRFL=(1.E+30) #SIGN(1.,EE)
                                                                             BOTR873
      GO TO 1745
1743 CALL EXEI (TBTH+XEI)
                                                                             BOTRE74
                                                                             BOTR875
                                                                             BOTR876
      PRESSURE RESPONSE FOR MAIN SUPERCRITICAL BOTTOM REFLECTION
      PRFL=CR*(EXP(-T8TH)*COS(E2)-XEI*SIN(E2)/PI)
                                                                             BOTR877
                                                                             BOTR878
 1745 PRFL=PRFL/PACTC/R2
                                                                             BOTR879
      PBOT=PACT*PRFL
                                                                             BOTR880
 1710 TIME=TACT+(T-1.)
                                                                             BOTR881
      PO*PACT#SW
                                                                             BOTR882
      IF (T.GE.RS) PS=-PACT/R1+EXP((RS-T)/THETSR)
      TOTAL PRESSURE (NEGATIVE VALUE LIMITED TO PH)
                                                                             BOTRE83
C
      P#AMAX1 (PD+PBOT+PS+PH)
                                                                             BOTR884
                                                                             BOTR885
      OUTPUT ROUTINE
C
      WRITE 16,551) T. PBOT. PD. PS. TIME, P
                                                                             BOTR886
                                                                             BOTR887
                                                                             BOTR888
      IF(IP.GT.1000) GO TO 4000
                                                                             BOTRE89
 7100 XX(IP)=TIME#1.0E6
                                                                             BOTR890
      YY(IP)=P
                                                                             BOTR891
      IP#IP+1
      BOTTOM REFLECTION TIME AND PRESSURE STORED IN QX AND QY FOR
                                                                            BOTRAGIA
C
                                                                            BOTR8918
      PTV CALCULATION.
C
      IF (T.LT.D2R2) GO TO 7102
                                                                            BOTRA91C
                                                                            BOTR891D
      IPTV=IPTV+1
                                                                            BOTR891E
      QX(IPTV)=TACT+(T-D2R2)
                                                                            BOTR891F
      QY(IPTV) = AMAX1(PBOT,PH)
 7102 TUT=T
                                                                             BOTR892
                                                                             BOTR893
      T=T+DT
                                                                             BOTR894
      IF (ABS(TDT-R2).LT.1.5#DT) T=TDT+0.2#DT
      IF ((TDT.LT.R2).AND.(T.GT.R2)) T=R2
                                                                             BOTR895
```

NOLTP 71-110

```
IF((TDT.LT.1.0).AND.(T.GT.1.0)) T=1.0
                                                                                BOTR896
      IF(T.LT.TSTOP) GO TO 1700
                                                                                80TR897
 4000 IPMAX=IP-1
                                                                                80TR898
      CALCOMP PLOT TAPE IS GENERATED IF 73 = 0.
                                                                                BOTRE99
      IF (Z3.NE.O.) GO TO 4001
                                                                                BOTR900
      CALL PLOTI (XX, YY, IPMAX, X1, X2, ADATE, THE, WCH, CBOT, POISR, Z1)
                                                                                80TR901
 4001 ICASE=ICASE+1
                                                                                BOTR902
      IF (RADIUS.GT.O.) GO TO 1997
                                                                               BOTR902A
      GO TO 4
                                                                                BOTR903
C
                                                                                BOTR904
                                                                                80TR905
                                                                                BOTR906
  500 FORMAT (10X+26HSLUPE OF BOTTOM IN DEGREES+54X+6HSLOPE=+E16+8
                                                                                80TR907
  501 FORMAT (5X.) 12HREDUCED TIME . 23X. 11HENERGY FLUX . 26X. 4HTIM: . 11X.
                                                                                80TR908
     18HPRESSURE, 10x, 7HIMPULSE/10x, 1HT, 16x, 4HPBOT, 31x, 2HPD, 12x,
                                                                                BOTR909
     27HSECONDS.14X.3HPSI / )
                                                                                BOTR910
  502 FORMAT (10x+39HREDUCED SLANT DISTANCE (RACTU/WCH**1/3)+41x+6HREDR=
                                                                                BOTR911
     1.1E15.8)
                                                                                80TR912
  503 FORMAT (10x+60HPRINT OUT CONTROL PARAMETER (25.GT.O. FOR SHORTER PR BOTR913
                                                                                BOTR914
     1INT OUT) +20X+3HZ5=+E16+6)
  504 FORMAT(10x,40HWEIGHT OF EXPLOSIVE CHARGE IN LB (OR KT),40X,5HWOH=
                                                                                BOTR915
                                                                                80TR916
     1 E15.8 )
  505 FORMAT(10x,36HVELOCITY OF SOUND IN WATER IN FT/SEC,44x,8HCWATER= .
                                                                               80TR917
                                                                                80TR918
     1E15.8
  506 FORMAT(10x+37HVELOCITY OF SOUND IN BOTTOM IN FT/SEC+43X+6HCBOT= +
                                                                                BOTR919
     1E15.8
                                                                                80TR920
 507 FORMAT(10x+25HDENSITY OF WATER IN GM/CC+55X+8HRHOWAT= +E15+8
508 FORMAT(10x+26HDENSITY OF BOTTOM IN GM/CC+54X+8HRHOBOT= +E15+8
                                                                                80TR921
                                                                                BOTR922
  509 FORMAT(10x,51HDURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA, BOTR923
     129X,7HDURAT= 1E15.8
                                                                                BOTR924
  510 FORMAT (1H1,52x+17HBOTTOM REFLECTION+10x+4HDATE+2x+1A10
                                                                                BOTR925
  511 FORMAT(10x+20HDEPTH OF WATER IN FT.60x+6HBIGH= 1E15.8
                                                                                80TR926
 512 FORMAT(10x+20HDEPTH OF GAUGE IN FT+60x+6HDGAU= 1E15.8
513 FORMAT(10x+24HDEPTH OF EXPLOSION IN FT+56X+3HD= 1E15.8
                                                                                BOTR927
                                                                                80TR928
  514 FORMAT(10x.50HHORIZONTAL DISTANCE BETWEEN CHARGE AND GAUGE IN FT.3 BOTR929
     10X.BHSMALLR= 1E15.8
                                                                                80TR930
  515 FORMAT (10X+41HCOEFFICIENT OF SW PRESSURE FORMULA IN PSI+39X+
                                                                                BOTR931
     1 BHPRECOE= .E15.8 )
                                                                                BOTR932
  516 FORMAT(10x,31HEXPONENT OF SW PRESSURE FORMULA,49X,BHPREEXP= ,1E15.
                                                                                80TR933
                                                                                80TR934
  517 FORMAT (10x, 50HCOEFFICIENT OF SW TIME CONSTANT FORMULA IN SECONDS,
                                                                                80TR935
                                                                                BOTR936
     1 30x.BHTHECOE .E15.8 )
  518 FORMAT(10x+36HEXPONENT OF SW TIME CONSTANT FORMULA+44x+8HTHEEXP= +
                                                                                BOTR937
     11E15.8 )
                                                                                BOTR938
  519 FORMAT(10x+31HNUMBER OF SUBDIVISIONS OF THETA 49X+7HSTEPS= +1E15+8
                                                                                BOTR939
                                                                                BOTR940
  520 FORMAT (1H0.47X.25HCHARACTERISTIC MAGNITUDES
                                                                                BOTR941
  521 FORMAT(10x+33HANGLE OF INCIDENT WAVE IN DEGREES+47X+5HTHE= +1E15.8 BOTR942
                                                                                BOTR943
  522 FORMAT (10x, 45HCRITICAL ANGLE OF COMPRESSION WAVE IN DEGREES, 35X, 7H BOTR944
     1ALPHA= 1E15.8 )
                                                                                BOTR945
  523 FORMAT(10X.33HREDUCED TIME OF PRECURSOR ARRIVAL.47X.6HD2R2= .1E15. BOTR946
                                                                                80TR947
     18 1
  524 FORMAT(10x,35HREDUCED TIME OF GROUND WAVE ARRIVAL,45x,4HR2= +1E15.
                                                                                BOTR948
     18/ )
                                                                                BOTR949
  525 FORMAT(10x,6BHSLANT DISTANCE BETWEEN CHARGE AND GAUGE=CHARACTERIST BOTR950
  11C LENGTH IN FT-12X.7HRACTU = .1E15.8 )
526 FORMAT(10X44HCHARACTERISTIC TIME=RACTU/CWATER IN SECONDS.36X.6HTAC BUTH952
                                                                                BOTR953
     1T= .1E15.8 )
  527 FORMAT (10x, 58HCHARACTERISTIC PRESSURE=FREE WATER SW PEAK PRESSURE
                                                                                BOTR954
     1IN PSI 22x,6HPACT= ,1E15.8)
                                                                                BOTR955
  528 FORMAT(10x,38HREDUCED TIME CONSTANT OF INCIDENT WAVE,42X,7HTHETA=
                                                                                BOTR956
     1.1E15.8 )
                                                                                BOTR957
                                                                                80TR958
  529 FORMAT (1H1)
```

```
530 FORMAT ( 5X.12HREDUCED TIME. 3X.17HSTEPWAVE RESPONSE. 3X.12HCONVOLUTI BOTR959
   10N-+25X+4HTIME+11X+8HPRESSURE+10X+7HIMPULSE/
                                                                       BCTR961
                                           12X,2HPO.12X,7HSECONDS
   2 10X+1HT+16X+4HSTPW+11X+8HFI/THETA +
                                                                       BOTR962
      11X.4HPBOT .13X.2HPS.15X.4HVMID.14X.3HPRE 7X.9HTHIRD ROW.9X. 7H BOTR963
   3 .14X.3HPSI.7X.11HENERGY FLUX/6X.10HSECOND ROW.
   SRESIDUE.7X.15HREDUCED IMPULSE.3X.13HREDUCED EFLUX.6X.6HPOSIMP.
                                                                       BOTR966
   6 24X.14HREOUCED POSIMP// )
533 FORMAT (10X.45HREDUCED TIME OF PEAK OF BOTTOM REFLECTED WAVE.
                                                                       ROTR967
                                                                       BOTR968
                                                                        BOTR969
 535 FORMAT (46X+28HCONSTANTS OF THE CALCULATION/ 9X+6HSMALLH+11X+6HDEZE BOTR970
    1RO.13X.2HO2.14X.5HCOSAL.12X.5HCOSTH.12X.5HSINTH/)
                                                                        BOTR972
 537 FORMAT (24X + 73HINPUT CHANGED SO THAT RATIO BETWEEN INCIDENT AND CRI BOTR973
 538 FORMAT (10X+49HDESIRED RATIO BETWEEN INCIDENT AND CRITICAL ANGLE+31 HOTR975
 539 FORMAT (10X+39HACTUAL SW TIME CONSTANT IN MILLISECONDS+40X+6H THET= BOTR977
                                                                        BOTR978
 541 FORMAT(10X.44HCRITICAL ANGLE OF COMPRESSION WAVE IMAGINARY )
     INGULARITY) / 40X+10H######### / )
                                                                         BOTR381
  542 FORMAT (10X . 38HCR1TICAL ANGLE OF SHEARWAVE IN OEGREES . 42X . 7HBETHA=
                                                                        BOTR982
                                                                         BOTR983
                                                                         BOTR984
  543 FORMAT (10X.37HCRITICAL ANGLE OF SHEARWAVE IMAGINARY )
                                                                         BOTR985
  546 FORMAT (10X+31HVELOCITY OF SHEARWAVE IN FT/SEC+49X+8HCSHEAR= 1E15+8 BOTR986
  547 FORMAT(10X+34HREDUCED TIME OF SURFACE REFLECTION+46X+4HRS= 1E15.8
                                                                         BOTR988
                                                                         BOTR989
   548 FORMAT (10X+46HREDUCEO TIME CONSTANT OF BOTTOM REFLECTED WAVE +34X
                                                                         BOTR990
                                                                          BOTR991
   549 FORMAT(10X+51HBOTTOM REFLECTED WAVE TIME CONSTANT IN MILLISECONDS
                                                                          BOTR992
                                                                          BOTR993
                                                                          BOTR994
      1 .29X.7HTHETR= E15.8 / )
   550 FORMAT (53X.11HRUN NUMBER .115/ 57X.5HINPUT// )
                                                                          BOTR995
   553 FORMAT (24X . 59HGEOMETRY CHANGEO SO THAT ARRIVAL TIME OF GROUNDWAVE
                                                                          BOTR996
                                                                          BOTR997
                                                                          ROTR998
    555 FORMAT (1H0+10H************ /5X+15H** WARNING ** //5X+35HSLOPE AND
                                                                          BOTR999
       1GEOMETRY ARE INCONSISTENT /5X+52HCOMPUTATION CONTINUES BUT RESULTS BOT1000
       2 MAY BE MEANINGLESS // )
                                                                           BOT1003
    556 FORMAT(18x,4E17.7,17X,E17.7/)
    558 FURMAT (39X+26HARRIVAL OF GROUNDWAVE PEAK//)
                                                                           BOT1004
    559 FURMAT (1H0.10x.27HARRIVAL OF DIRECT WAVE P = .E17.7 // )
                                                                           B071005
                                                                           B011006
    560 FORMAT (50X+21HFAST NON-RIGID BOTTOM )
    561 FORMAT (50X+21HSLOW NON-RIGID ROTTOM )
                                                                           BOT1007
    562 FORMAT (44X+33HRIGID BOTTOM WITH FAST SHEAR WAVE )
563 FORMAT (44X+33HRIGID BOTTOM WITH SLOW SHEAR WAVE )
                                                                           BOT1008
                                                                           BOT1009
                                                                            BOT1010
                                                                            BOTIOII
     565 FURMAT (48x+24HPLANE WAVE APPROXIMATION
                                                                            BOT1012
     566 FURMAT (45X+25HCOMPLEX ARITHMETIC METHOD )
                                                                            BOT1013
                                                                           BOT1013A
     568 FORMAT (10x, 21HCYLINDER RADIUS IN FT .59x, 7HRADIUS= .E15.8 )
     567 FORMAT (52X+16HROSENBAUM METHOD
                                                                           BOT10138
     569 FORMAT (10X+43HPRINT CONTROL PARAMETER (FULL PRINT OUT IN +
                                                                           B071013C
        1 31HSURROUTINF PTV 1F APRINT. LE. 0.) .6X. 8HAPRINT = E15.8 )
     570 FORMAT (1H0+18X+5HT1ME1+4X+14HPTV(SUBMERGEO)+2X+12HPTV(SURFACE)/
                                                                           BOT1013D
                                                                           BOT10:3E
        1 19X.5H(SEC).7X.8H(FT/SEC).7X.8H(FT/SEC)/11X.3E15.6)
                                                                             BOT1014
      573 FORMAT (10x - 35HVELOCITY OF STONLEY WAVE IN FT/SEC
                                                                             HOT1015
      10PING ROTTOM )
```

```
579 FURMAT(10x+55HREDUCED ARRIVAL TIME OF CRITICALLY REFRACTED SHEAR W BOT1018
     1AVE . 25X . 8HSHD2R2= E15.8)
                                                                               BUT1019
 584 FURMAT(10x,52HSCALING PARAMETER FOR Y-AXIS (PSI PER INCH OF GRAPH)
                                                                               80T1020
                                                                               B0T1021
     1 28x,4HX1= ,E15.8
 535 FORMAT (10x+61HSCALING PARAMETER FOR X-AXIS (MICROSECONDS PER INCH
                                                                               BOT1022
                                                                               BOT1023
     10F GRAPH) 19x,4HX2= ,E15.8
 586 FORMAT (10x+29HPARAMETER THAT SELECTS THEORY:51X+4HZ1= ,E15.8 )
                                                                               BOT1024
 587 FURMAT (10x.43HARRIVAL TIME OF GROUND WAVE IN MICROSECONDS 37X.4HZ2 BOT1025
     1= ,E15.8 )
                                                                               B0T1026
  588 FORMAT (10x+55HPLOT CONTROL PARAMETER (Z3 = 0, MEANS PLOTS ARE WANT BOT1027
     1ED) +25X+4HZ3= +E15.8)
                                                                               B0T1028
  590 FORMAT (43x,39HARONS-YENNIE APPROACH NON-RIGID BOTTOMS / )
                                                                               B0T1029
  591 FURMAT ( 5x-12HREDUCED TIME, 3x, 17HBOTTOM REFLECTION, 4x, 9HSHOCKWAVE, BOT1030
     1 4X, 18HSURFACE REFLECTION . 5X, 4HTIME , 8X, 14HTOTAL PRESSURE/10X,
                                                                               BOT1031
     2 1HT,15x,4HPBOT,14X,2HPD,15x,2HPS,12x,7HSECONDS,9x,
                                                                               BOT1032
                                                                               BOT1033
     3 7HP (PSI) / )
  592 FORMAT (10x.22HREFLECTION COFFFICIENT.58x.4HCR= 1E15.8 )
                                                                               BOT1034
 593 FORMAT(10x+30HANGLE OF PHASESHIFT IN DEGREES +50x+4HEE= 1E15+8)
594 FORMAT(10x+39HANGLE OF SHEARWAVE IN BOTTOM IN DEGREES+41x+6HANGA=
                                                                                BOT1035
                                                                               BOT1036
                                                                                BOT1037
     1 1E15.A )
  596 FORMAT(37x,47HARONS-YENNIE APPROACH EXTENDED TO RIGID BOTTOMS / )
                                                                                BOT1038
  597 FORMAT (10x+43HANGLE OF PRESSURE WAVE IN BOTTOM IN DEGREES+37X+8HTH BOT1039
     1EONE - 1E15.8 )
                                                                                BOT1040
  598 FORMAT (18x,4E17.7,17X,E17.7)
                                                                                BOT1041
  599 FORMAT(10x,42HINPUT INCONSISTENT. COMPUTATION SUPPRESSED/)
                                                                                B0T1042
                                                                                BOT1043
C
       END
                                                                                BOT1044
C*****SURROUTINE STONL***
                                                                                STON001
C
                                                                                STON002
C
                                                                                STON003
      CALCULATION OF PROPAGATION VELOCITY OF STONLEY WAVE.
C
                                                                                STON004
C
                                                                                STONO05
C
                                                                                STON006
      SURROUTINE STONL
                                                                                STON007
      COMMON B,COSAL,COSTH,R2,SINBE,SINTH,CWATER,CBOT,CSHEAR,CSTON,RESID STONGOB COMMON C2,CBOT2,CSHR2,CBSH,C2SHR2,C4CB,SINTH2 STONGO9
C
                                                                                STONOLO
      IF (CSHEAR.LE.O.) GO TO 416
                                                                                STON011
    4 Cl2=CWATER++2
                                                                                STONG12
      C32=C8CT**2
                                                                                STON013
      C42±CSHEAR##2
                                                                                STON014
                                                                                STON015
      ITERATION PROCESS
                                                                                STON016
       IF (CWATER.GT.CSHEAR) GO TO 2
                                                                                STON017
    1 Y2=CWATER##2
                                                                                STONOLR
      GO TO 3
                                                                                STONG19
    2 YZ=CSHEAR##2
                                                                                STON020
    3 CK=Y2/1000.
                                                                                STON021
      FY=SGRT(C12=Y2)+(CBOT+(Y2-2.+C42)++2-4.+CSHEAR+C42+SQRT((C32-Y2)+( STON022
     1C42-Y2)))+B*CWATER*Y2**2*SORT(C32-Y2)
                                                                                STON923
      Y2=Y2-CK
                                                                                STON024
  400 DO 410 IR=1,999
                                                                                STON025
C
                                                                                STON026
C
      FS STORED
                                                                                STON027
                                                                                STON02A
                                                                                STON029
C
      STONLEY WAVE VELOCITY
                                                                                STON030
C
                                                                                STON031
      FY=SQRT(C12-Y2)+(CBOT+(Y2-2,+C42)++2-4,+CSHEAR+C42+SQRT((C32-Y2)+( STON032
     1C42-Y2)))+B*CWATER*Y2**2*SORT (C32-Y2)
                                                                                STON033
C
                                                                                STON034
```

```
¢
                                                                                STON035
       IF (FY) 412,415,408
                                                                                STON036
  408 Y2=Y2-CK
                                                                                STON037
  410 CONTINUE
                                                                                STON038
      WRITE (6.401) CWATER, CBOT, CSHEAR, B. Y2.FS.FY
                                                                                STON039
                                                                                STON040
CCC
                                                                                STON041
      FY IS NEGATIVE
                                                                                STON042
                                                                                STON043
      FALSE POSITION OR SECANT METHOD ITERATION
C
                                                                                STON044
  412 YS=Y2+CK
                                                                                STON045
      DO 450 I=1,50
                                                                                STON046
       YSS=Y2
                                                                                ST0N047
      IF (ABS ((YS-Y2)/YS) .LT.1.0E-7) GO TO 415
                                                                                STON048
  440 YZ=YS+FS*(Y2-YS)/(FS-FY)
                                                                                STON049
      FS=FY
                                                                                STON050
                                                                                STON051
C
                                                                                STON052
      FY=SQRT(C12-Y2)+(CBOT+(Y2-2-+C42)++2-4.+CSHEAR+C42+SQRT((C32-Y2)+(STON053
     1C42-Y2)))+B*CHATER*Y2**2*SQRT(C32-Y2)
                                                                                STON054
C
                                                                                STON055
  450 CONTINUE
                                                                                STON056
      WRITE(6,402) CWATER, CBOT, CSHEAR, B, Y2, YS, FS, FY
                                                                                STON057
      STOP
                                                                                STON058
C
                                                                                STON059
      RESULT
                                                                                STON060
  $15 CSTON=SQRT (Y2)
                                                                                STON061
      RETURN
                                                                                STON062
  416 CSTON=-0.
                                                                                STON063
      RETURN
                                                                                STONS64
                                                                                STON065
  401 FORMAT(20X) 42HFIRST ITERATION FOR CSTON DID NOT CONVERGE//
                                                                                STON066
  1 30H CWATER. CBOT. CSHEAR. B. Y2. FS. FY // 1P7E16.6)
402 FORMAT(20x. 43HSECOND ITERATION FOR CSTON DID NOT CONVERGE//
                                                                                STON067
                                                                                STON068
     1 33H CWATER, CBOT, CSHEAR, B, Y2, YS, FS, FY // 1P8E14.6)
                                                                                STON069
С
                                                                                STON070
       END
                                                                                STON071
                                                                                STPA001
C+++>*SUBROUTINE STPWA++++
                                                                                STPA002
                                                                                STPA003
C
                                                                                STPA004
       PRECURSOR CALCULATION USING CAGNIARD METHOD.
C
                                                                                STPA 005
                                                                                 STPA006
C
       SUBROUTINE STPWA(T.STPW,CONTR,K)
                                                                                 STPA007
                                                                                 STPACOR
       DIMENSION P (30)
       COMMON B, COSAL, CC3TH, R2, SINBE, SINTH, CWATER, CBOT, CSHEAR, CSTON, RESID STPA009
       COMMON C2,CBOT2,CSHR2,CBSH,C2SHR2,C4CB,SINTH2
                                                                                 STPA010
                                                                                 STPA011
       EXTERNAL ONE , SEVEN
       DATA AA,BB.SQ2/-1.57079633,1.57079633,1.41421356/
                                                                                 STPA012
                                                                                 STPAG13
       TR=T/R2
                                                                                 STPA014
       V=SQRT (1.-TR*#2)
                                                                                 STPA015
    5 IF (CONTR.EQ.3.) GO TO 100
                                                                                 STPA016
C
                                                                                 STPA017
       CALCULATION OF THE PRECURSOR USING CAGNIARD-ROSENBAUM INTEGRALS.
                                                                                 STPAOLE
                                                                                 STPA019
C
                                                                                 STPA020
       P(9)=0.
       XM=COSTH*TR+SINTH*V
                                                                                 STPA021
                                                                                 STPA022
       P(1)=COSAL=XM
       P(2)=4.*V*SINTH/P(1)
                                                                                 STPA023
                                                                                 STPA024
       P(5)=COSAL+XM
```

```
FACTOR=SQ2*B/(R2*BB)
                                                                             STPA025
C
                                                                             STPA026
      STPW=FACTOR#FGI (AA+28+K+ONE+P)
                                                                             STPA027
C
                                                                             STPA028
      RETURN
                                                                             STPA029
C
                                                                             STPAGRO
C
                                                                             STPA031
C
                                                                             STPA032
   CALCULATION OF THE PRECURSOR USING COMPLEX ARITHMETIC METHOD
C
                                                                             STPA033
                                                                             STPA034
C
  100 P(1)=0.
                                                                             STPA035
      P(2)=TR
                                                                             STPA036
      P(3)=CHATER/CBOT
                                                                             STPA037
      P(4)=SINTH+TR-COSTH+V
                                                                             STPA038
      FACTOR=R2+BB
                                                                             STPA039
C
                                                                             STPA040
      ANS2=SEVEN (P(4),P)
                                                                             STPA041
C
                                                                             STPA042
      STPW=(ANS2+FGI(P(3)+P(4)+K+SEVEN+P))/FACTOR
                                                                             STPA043
C
                                                                             STPA044
      RETURN
                                                                             STPA045
       END
                                                                             STPA046
C*****SUBROUTINE STPWB****
                                                                             STPB001
                                                                             STPR002
C
                                                                             STPB003
      CALCULATION OF "'IN BOTTOM REFLECTION
C
                                                                             STPB004
C
                                                                             STPB005
C
                                                                             STPB006
      SUBROUTINE STPWB (T.STPW.CONTR.K)
                                                                             STPB007
      DIMENSION P(30)
                                                                             STPB008
      COMMON B.COSAL.COSTH.RZ.SINRE,SINTH.CWATER.CBOT.CSHEAR.CSTON.RESID STPB009
      COMMON CZ.CBOTZ.CSHRZ.CBSH.C2SHRZ.C4CB.SINTH2
                                                                             STPB010
      EXTERNAL TWO.ONE.ONE.SEVEN
                                                                             STPB011
      DATA BB, SQ2/1,57079633,1,41421356/
                                                                             STPB012
C
                                                                             STPB013
      TR=T/R2
                                                                             STPB014
    5 IF (CONTR.EQ.3.) GO TO 100
                                                                             STPB015
C
                                                                             STPB016
C
      CALCULATION OF THE MAIN REFLECTION USING CAGNIARD-ROSENBAUM
                                                                             STPB017
C
      INTEGRALS.
                                                                             STPB018
C
                                                                             STPB019
      P(9)=,.
                                                                             STPB020
C
                                                                             STPB021
C
      MAGNITUDES K AND L
                                                                             STPB022
      XK=COSTH*TR
                                                                             STPB023
      XL=SINTH*+2+(TR++2-1.)
                                                                             STPR024
C
                                                                             STPB025
      P(7)=XK
                                                                             STPB026
      P(B)=XL
                                                                             STPB027
C
      MAGNITUDES D.E. AND F
                                                                             STPB028
      P(11)=TR++2+(1.-2.+SINTH++2)+SINTH++2
                                                                             STPB029
      P(12)=4.*SINTH**2*COSTH**2*TR**2*(TR**2-1.)
                                                                             STP8030
      P(13)=TR*#2-SINTH*#2
                                                                             STPB031
      FACTOR=B/BB/R2
                                                                             STPB032
      IF (CSHEAR.GT.O.) GO TO 12
                                                                             STPB033
                                                                             STPB034
C
      NON-RIGID BOTTOMS
                                                                             STPB035
C
                                                                             STPB036
C
                                                                             STPB037
   10 TERM1=(1.-B)/(1.+B)/R2
                                                                             STPB038
      RESID=0.
                                                                             STPB039
```

```
IF (CBOT.GT.CWATER) GO TO 11
                                                                             STPB040
      SLOW NON-RIGID BOTTOMS
C
                                                                             STPB041
      SIGM=SQRT ((CWATER/CBOT) **2-1.)
                                                                             STPB042
      STPW=TERM1-SQ2*FACTOR*FGI(0.*SIGM*K*TWO*P)
                                                                             STPB043
      RETURN
                                                                             STPB044
C
                                                                             STPB045
      FAST NON-RIGID BOTTOMS
                                                                             STPB046
   11 STPW=TERM1+FACTOR*FGI(0. COSAL KONE P)
                                                                             STPB047
      RETURN
                                                                             STPB048
C
                                                                             STPR049
C
                                                                             STPB050
      RIGID BOTTOMS
                                                                             STPB051
C
                                                                             STPB052
                                                                             STPB053
C
      STONELEY POLE RESIDUE
                                                                             STPB054
C
                                                                             STPB055
   12 TERM=1./R2
                                                                             STPB056
      CWS2=(CWATER/CSHEAR) ++2
                                                                             STPR057
      SK=CWATER/CSTON
                                                                             STPB058
      SK2=SK##2
                                                                             STPB059
      XG1=SQRT (ABS(SK2-1.))
                                                                             STPB060
      XG3=SQRT (ABS (SK2-(CWATER/CBOT) ++2))
                                                                             STPB061
      XG4=SQRT (ABS (SK2-CWS2))
                                                                             STPB062
      XSA=R2**2*(TR**2-SK2+COSTH**2)
                                                                             STPB063
      XSF=(2.*R2**2*TR*COSTH*XG1)**2
                                                                             STPB064
      XNUM=XG1 * ((CWS2/2.-SK2) **2-SK2*XG3*XG4) -B*XG3*CWS2**2/4.
                                                                             STPB065
      XDEN=((CW52/2,-SK2)++2-SK2+XG3+XG4)/XG1-XG1+(2.+CWS2-4,+SK2+2.+XG3 STPB066
     1*XG4+SK2*(XG4/XG3+XG3/XG4))+B*CWS2**2/4./XG3
                                                                             STPB067
      RESID= -SQ2
                     +SQRT(ABS((SQRT(ABS(XSA++2+XSF))-XSA)/(XSA++2+XSF)) STP8068
     1) *XNUM/XDEN/XG1
                                                                             STPB059
C
                                                                             STPB070
      TERM1=1./R2+RESID
                                                                             STPB071
                                                                             STPB072
C
      IF (CSHEAR.GT.CWATER) GO TO 50
                                                                             STPB073
C
                                                                             STPB074
C
                                                                             STPB075
Č
      SLOW SHEAR WAVE
                                                                             STPB076
                                                                             STPB077
                                                                             STPB078
   30 SIG2=SQRT(CWS2-1.)
      STPW=TERM1+FACTOR*(FGI(0.+COSAL+K+ONE+P)-CWS2**2*SQ2/4.*
                                                                             STPB079
     1 FGI(0..SIG2.K.ONE1.P))
                                                                             STPB080
      RETURN
                                                                             STPB081
                                                                             STPB082
C
      FAST SHEAR WAVE
                                                                             STPR083
                                                                             STPB084
   50 STPW=TERM1+FACTOR*FGI(0..COSAL.K.ONE.P)
                                                                             STPB085
C
                                                                             STPR086
   99 RETURN
                                                                             STPB087
C
                                                                             STPB088
C
                                                                             STPB089
C
                                                                             STPB090
C
   CALCULATION OF THE MAIN REFLECTION USING COMPLEX ARITHMETIC METHOD
                                                                             STPR091
                                                                             STPB092
  100 P(1)=COSTH+SQRT(TR++2-1.)
                                                                             STP8093
      P(2)=TR
                                                                             STPR094
      P(3)=0.
                                                                             STPB095
      P(4)=SINTH*TR
                                                                             STPB096
      FACTOR=R2+BB
                                                                             STPB097
C
                                                                             STPB098
      ANS2=SEVEN (P(4) .P)
                                                                             STP8099
      STPW=(ANS2+FGI(P(3)+P(4)+K+SEVEN+P))/FACTOR
                                                                             STPB100
¢
                                                                             STPB101
C:
                                                                             STPB102
      RETURN
                                                                             STPB103
       END
                                                                             STPR104
```

```
C++++FUNCTION ONE+++
                                                                              UNE 001
                                                                              ONE 002
C
                                                                              ONE 003
C
      INTEGRAND OF THE CAGNIARD-ROSENBAUM INTEGRAL FOR ALL FAST BOTTOMS. ONE 004
Č
      EXCEPT FOR PART OF THE MAIN REFLECTION OF A BOTTOM WITH SLOW SHEAR ONE 005
C
                                                                              ONE 006
                                                                              ONE 007
      FUNCTION ONE (X.P)
                                                                              ONE 008
      DIMENSION P(30)
                                                                              ONE 009
      COMMON 8.COSAL.COSTH.R2.SIN8E,SINTH.CWATER.CBOT.CSHEAR.CSTON.RESID ONE 010
      COMMON C2.CBOT2.CSHR2.CBSH.C2SHR2.C4CB.SINTH2
                                                                              ONE 011
C
                                                                              ONE 012
      P ARRAY CALCULATED IN SUBROUTINES STPWA AND STPWB TEST FOR PRECURSOR PHASE
C
                                                                              ONE 013
                                                                              ONE 014
      IF(P(9).GT.0.) GO TO 2
                                                                              ONE 015
C
                                                                              ONE 016
      PRECURSOR PHASE
                                                                              ONE 017
                                                                              ONE 018
      SINX=SIN(X)
                                                                              ONE 019
      W=(SINX+P(1)+P(5))/2.
                                                                              ONE 020
      XC23C05AL++2-4++2
                                                                              ONE 021
      IF(XC2.LT.0.) XC2=0.
                                                                              ONE 022
      Fx=(1.-SINX) +SQRT(((COSAL+W)+P(1))/(1.+SINX+P(2)))
                                                                              ONE 023
      60 TO 3
                                                                              ONE 024
                                                                              ONE 025
                                                                              ONE 026
      MAIN REFLECTED WAVE
    2 W=X
                                                                              ONE 027
      XC2=COSAL++2-W++2
                                                                              ONE 028
      IF(XC2.LT.0.) XC2=0.
                                                                              ONE 029
      RT1=SQRT(XC2/(P(8)+(W-P(7))**2))
                                                                              ONE 030
      RT2=SQRT(XC2/(P(8)+(W+P(7))**2))
                                                                              ONE 031
      FX=RT1-RT2
                                                                              ONE 032
C
                                                                              ONE 033
      RELATIONS FOR PRECURSOR AND MAIN WAVE
                                                                              ONE 034
C
                                                                              ONE 035
    3 IF (CSHEAR.EQ.O.) GO TO 110
                                                                              CNE 036
C
                                                                              ONE 037
                                                                              ONE 038
      RIGID BOTTOMS
      CSW-CSHEAR/CWATER
      CSW2=CSW**2
                                                                              ONE 040
      FRC9=CSW2+(W++2-1.)+1.
                                                                              ONE 041
C
                                                                              ONE 042
      XA=W*(1.-2.*CSW2*(1.-W**2))**2
                                                                              ONE 043
      XB=4.*W*CSW2'CSW*(1.-W*02)*SQRT(XC2*A8S(FRCS))
                                                                              ONE 044
                                                                              ONE 045
C
      IF (FRCS.GE.O.) GO TO 22
                                                                              ONE 046
      ONE=FX+(XA-XB)/((XA-X8)++2+B+B+XC2 )
                                                                              ONE 047
                                                                              ONE 048
      RETURN
C
                                                                              ONE 049
                                                                              ONE 050
   22 XC=B+SQRT(XC2)
      ONE=FX*XA/(XA**2+(X8+XC)**2)
                                                                              ONE 051
                                                                              ONE 052
      RETURN
                                                                              ONE 053
      NON-RIGID BOTTOMS
                                                                              CNE 054
  110 ONE=FX+W/(W++2+B+B+XC2 )
                                                                              ONE 055
      RETURN
                                                                              ONE 056
C
                                                                              ONE 057
       END
                                                                              ONE 058
```

```
ONE1001
C****FUNCTION ONE1****
                                                                             ONE1002
Ç
                                                                             ONE1003
C
      INTEGRAND OF THE SECOND CAGNIARD-ROSENBAUM INTEGRAL OCCURRING FOR
                                                                             ONE1004
      THE MAIN REFLECTION OF A BOTTOM WITH A SLOW SHEAR WAVE.
                                                                             ONE 1005
C
                                                                             ONE 1006
                                                                             ONE1007
      FUNCTION ONE1 (X.P)
                                                                             ONE1008
      DIMENSION P(30)
                                                                             ONE1009
      COMMON B.COSAL.COSTH.R2.SINBE,SINTH,CWATER.CBOT,CSHEAR.CSTON.RESID ONE1010
      COMMON C2, CBOT2, CSHR2, CBSH, C25HR2, C4CB, SINTH2
                                                                             ONE 1011
                                                                             ONE1012
C
                                                                             ONE 1013
    1 CWS2=(CWATER/CSHEAR) **2
      SIG22=CWS2-1.
                                                                             ONE 1014
                                                                             ONE 1015
      XAB=X+(CWS2/2,-1.-X++2)++2
      X86=X+(1.+X++2)+SQRT((COSAL++2+X++2)+(SIG22-X++2))
                                                                             ONE1016
      XCB=B+CW52++2+SQRT(COSAL++2+X++2)/4.
                                                                             ONF 1017
C
                                                                             ONE1018
      FAB=SQRT (X++2+COSAL++2)+XBB/((XAB+XCB)++2+XBB++2)
                                                                             ONE 1019
      FBB#SQRT((SQRT((X**2+P(11))**2+P(12))+X**2-P(13))/((X**2+P(11))**2 ONE1020
                                                                             ONE1021
     1+P(12)))
      P ARRAY CALCULATED IN SUBROUTINE STPWB
                                                                              ONE 1022
C
      ONE1=FAB*F8B
                                                                             ONE1023
                                                                              ONE1024
C
   99 RETURN
                                                                              ONE 1025
                                                                              ONE 1026
       END
C####FUNCTION TWO####
                                                                             TWO 001
¢
                                                                             TWO 002
C
                                                                             TWO 003
      CAGNIARD-ROSENBAUM INTEGRAND FOR SLOW NON-RIGID BOTTOMS
                                                                             TWO 004
C
                                                                             TWO 005
C
                                                                             TWO 006
      FUNCTION TWO(X.P)
                                                                             TWO 007
      DIMENSION P(30)
                                                                             TWO OUR
      COMMON B. COSAL, COSTH. RZ, SINBE, SINTH, CHATER, CBOT, CSHEAR, CSTON, RESID TWO 009
      COMMON C2, CBOT2, CSHR2, CRSH, C2SHR2, C4CB, SINTH2
                                                                             TWO 010
C
                                                                             TWO 011
      SIGM2=(CWATER/CBOT) ++2-1.
                                                                             TWO 012
      FAB=X#SQRT(SIGM2-X##2)/((1.-B##2)*X##7+SIGM2#B##2)
                                                                             TWO 013
      FBB=SQRT((SQRT((X##2+P(11))##2+P(12))+X##2-P(13))/((X##2+P(11))##2 TWO 014
     1+P(12)))
                                                                             TWO 015
      P ARRAY CALCULATED IN SUBROUTINE STPWR
C
                                                                             TWO 016
      TWO=FAB#FBB
                                                                             TWO 017
C
                                                                             TWO DIA
      RETURN
                                                                             TWO 019
       END
                                                                             TWO 020
                                                                             SEVN001
C####FUNCTION SEVEN###
                                                                             SEVN002
C
C
                                                                             SEVN003
Č
                                                                             SEVN004
      INTEGRAND OF CAGNIARD INTEGRAL USING COMPLEX ARITHMETIC.
                                                                             SEVN005
C
                                                                             SEVN006
Ç
                                                                             SEVN007
      FUNCTION SEVEN(Z+P)
                                                                             SEVN008
      DIMENSION P(30)
      COMMON B.COSAL COSTH.R2.SINBE.SINTH.CWATER.CBOT.CSHEAR.CSTON.RESID SEVNO09
      COMMON C2, CBOT2, CSHR2, CHSH, C2SHR2, C4CB, SINTH2
                                                                             SEVN010
      COMPLEX F.RCOE.Y1,Y3,V.RT1.RT2,RT5,W.U1,U2,U3,U4
                                                                              SEVN011
                                                                              SEVN012
      COMPLEX V2.XY1.XW
```

```
C
      P ARRAY CALCULATED IN SUBROUTINES STPWA AND STPWS
                                                                             SEVN013
      V=CMPLX(P(1)+Z)
                                                                             SEVN014
      V*V*V
                                                                             SEVN015
      RT1=CSGRT(1.+V2)
                                                                             SEVN016
      RT2=CSQRT(V2+CBOT2+C2)
                                                                             SEVN017
      IF (CSHEAR.GT.O.) GO TO 20
                                                                             SEVN018
C
                                                                             SEVN019
                                                                             SEVN020
      NON-RIGID BOTTOMS
C
      Y3=8/C80T*RT2
                                                                             SEVN021
      RCOE=(RT1-Y3)/(RT1+Y3)
                                                                             SEVN022
      GO TO 40
                                                                             SEVN023
                                                                             SEVN024
      RIGID BOTTOMS
                                                                             SEVN025
   20 XY1=C25HR2+V2+C2
                                                                             SEVN026
      Y1=HT1*(XY1*XY1+CBSH*V2*RT2*CSQRT(V2*CSHR2+C2))
                                                                             SEVN027
      Y3=C4C8*RT2
                                                                             SEVN028
      RCOE=(Y1-Y3)/(Y1+Y3)
                                                                             SEVN029
   40 IF(Z.EG.P(4)) GO TO 50
                                                                             SEVN030
C
      INTEGRAND CALCULATION
                                                                             SEVN031
      XW=P(2)-COSTH+RT1
                                                                             SEVN032
      W=V2+SINTH2+XW+XW
                                                                             SEVN033
      F=V/RT1/CSQRT(W)
                                                                             SEVN034
      SEVEN=REAL (F# (RCOE-RT5))
                                                                             SEVN035
                                                                             SEVN036
      RETURN
                                                                             SEVN037
C
      CALCULATION OF ANSZ
                                                                             SEVN038
50
      RT5=RCOE
                                                                             SEVN039
      U1=CMPLX(P(1)+P(3))
                                                                             SEVN040
      U2=1.+U1*U1
                                                                             SEVN041
      U3=CSGRT(U2)
                                                                             SEVN042
      XB=-P(2) +COSTH
                                                                             SEVN043
      U4=HT5+CLOG((RT1+xB)/(CSQRT(U2+2.+xR4U3+P(2)++2- SINTH2 )+U3+xB))
                                                                            SEVN044
      SEVEN=AIMAG(U4)
                                                                             SEVNO45
      RETURN
                                                                             SEVN046
                                                                             SEVN047
       END
C*****SURROUTINE EXE1***
                                                                            EXE1001
                                                                            EXE1002
C
                                                                            EXE1003
C
      CALCULATION OF EXPONENTIAL INTEGRAL E1 TIMES EXP(-Y) , NEGATIVE Y
                                                                            EXE1004
C
                                                                            EXE1005
      SUBROUTINE EXEL (Y.ANS)
                                                                            EXE1006
      DIMENSION A (4) +B (4) +C (6)
                                                                            EXE1007
      DATA A/ 8.5733287.18.059017.8.6347609.0.26777373 /
                                                                            EXE1008
      DATA H/ 9.5733223.25.632956.21.0996531.3.9584969 /
                                                                            EXE1009
      DATA C/ -0.57721566,0.99999193,-0.24991055,0.05519968,-0.00976004
                                                                            EXE1010
     1 +0.00107857 /
                                                                             EXE1011
                                                                            EXE1012
      IF (X.LT.1.0) GO TO 10
                                                                            EXE1013
      ANS=(A(4)+X+(A(3)+X+(A(2)+X+(A(1)+X))))/(B(4)+X+(B(3)+X+(B(2)+
                                                                            EXE1014
     1 X*(B(1)+X))))/X
                                                                            EXE1015
      RETURN
                                                                            EXE1016
   10 ANS=EXP(X)*(C(1)+X*(C(2)+X*(C(3)+X*(C(4)+X*(C(5)+X*C(6)))))=
                                                                            EXE1017
     1 ALOG(X))
                                                                            EXE1018
      RETURN
                                                                            EXE1019
      END
                                                                            EXE1020
```

```
EXEI001
C****SUBROUTINE EXFI***
                                                                                  EXEI005
C
                                                                                  EXFI003
C
      CALCULATION OF EXPONENTIAL INTEGRAL EI TIMES EXP(-Y) , POSITIVE Y EXELOG4
                                                                                  EXEI005
C
       SUBROUTINE EXEI (Y.ANS)
                                                                                  EXEI 006
      DIMENSION P(10) . A(6)
                                                                                  EXEI007
                                                                                  EXEI008
       EXTERNAL EXPO
                                                                                  EXEI009
      DATA A/ .25,.05555556,.01041667,.00166667,.00023148,.00002834 /
       IF (Y.GT.0.5) GO TO 10
                                                                                  EXEIOIO
       U=Y+(1.+Y+(A(1)+Y+(A(2)+Y+(A(3)+Y+(A(4)+Y+(A(5)+Y+A(6)))))))
                                                                                  EXEI011
                                                                                  EXETO12
       ANS=(0.57721566+ALOG(Y)+U) *EXP(-Y)
                                                                                  EXEI013
       RETURN
   10 P(1)=Y
                                                                                  EXEI014
                                                                                  EXEI015
       ANS1=FGI(1.,Y,4,EXPO,P)
       ANS=ANS1+1.8951178 *EXP(-Y)
                                                                                  EXEI016
                                                                                  EXEI017
       RETURN
                                                                                  EXEI018
       END
                                                                                  EXP0001
C****FUNCTION EXPO***
                                                                                  EXP0002
                                                                                  EXP0003
C
       INTEGRAND OF EXPONENTIAL INTEGRAL
                                                                                  EXP0004
C
                                                                                  EXP0005
C
                                                                                  EXP0006
       FUNCTION EXPO(X+P)
       DIMENSION P(10)
                                                                                   EXP0007
                                                                                  EXP0008
       EXPOREXP(X-P(1))/X
                                                                                  ExPoon9
       P(1) IS THE ARGUMENT OF THE EXPONENTIAL INTEGRAL
¢
                                                                                   EXP0010
       RETURN
                                                                                  ExP0011
       END
C*****FUNCTION FGI***
                                                                                   FGI 001
C
                                                                                   FGI 002
С
                                                                                  FGI 003
FGI 004
C
       THIS SUBPROGRAM INTEGRATES THE FUNCTION F BETWEEN THE LIMITS
       A AND B USING A FOUR-POINT GAUSSIAN QUADRATURE IN EACH OF THE K SUPINTERVALS. P IS AN ARRAY USED TO TRANSFER PARAMETERS TO THE
CCC
                                                                                  FGI 005
FGI 006
       FUNCTION F.
                                                                                   FGI 007
                                                                                   FGI 008
                                                                                   FGI 009
       FUNCTION FGI(A,B,K,F,P)
       DIMENSION V(4) + W(2) + SUM(4) + P(1)
                                                                                   FGI 010
       DATA V/ -.861136311594053,-.339981043584856,
                                                                                   FGI 011
                                                                                  FGI 012
FGI 013
      1 .339981043584856,.861136311594053 /
       DATA W/ .347854845137454..652145154862546 /
       SUM(1)=0.0
                                                                                   FGI 014
                                                                                  FGI 015
FGI 016
       SUM(2)=0.0
       SUM (3) =0.0
       SUM(4)=0.0
H=(8-A)/FLOAT(K)
                                                                                  FGI 017
FGI 018
       H2=H/2.
                                                                                  FGI 019
FGI 020
       SH+A=AA
       DO 20 L=1.K
                                                                                   FGI 021
       DO 10 I=1,4
                                                                                   FGI 022
       X=H2+V(I)+AA
                                                                                  FGI 023
    10 SUM(I)=SUM(I)+F(X+P)
                                                                                   FGI 024
    H+AA=AA 0S
                                                                                   FGI 025
       FGI=H2*(W(1)*(SUM(1)*SUM(4))+W(2)*(SUM(2)+SUM(3)))
                                                                                   FGI 026
       RETURN
                                                                                   FGI 027
       END
                                                                                   FGI 023
```

```
C*****SUBROUTINE PLOT1***
                                                                             PLOT001
                                                                             PLOT002
C
                                                                             PLOT003
      PLOTTING SUBROUTINE WHICH GENERATES A PLOT TAPE FOR
C
                                                                             PLOT004
С
      CALCOMP PLOTTER
                                                                             PLOT005
C
                                                                             PLOT006
      SUBROUTINE PLOT1 (XX,YY,IPMAX,X1,X2,ADATE,THE,WCH,CHOT,POISR,Z1)
                                                                             PLOT007
      DIMENSION XX(1000) . YY(1000) . BCDX(2) . BCDY(2) . TITLEO(2) . TITLE1(2) .
                                                                             PLOT008
     1TITLE2(2).TITLE4(3).TITLE5(2).TITLE6(2).TITLE7(2).TITLE8(2).
                                                                             PLOT009
     2TITLE9(2)
                                                                             PLOT010
      DATA RCDX/10HTIME (MICR+10HOSEC)
                                                                             PLOT011
     18CDY/10HPRESSURE (+10HPSI)
                                       /,
                                                                             PLOT012
     2TITLE1/10HBOTTOM REF.10HLECTION
                                                                             PLOT013
     3TITLE2/10HCAGNIARD-R.10HOSENBAUM /.
                                                                             PLOT014
     STITLE3/10HPLANE WAVE/.
STITLE4/10HPLANE WAVE+10H USING CON,10HV. INT.
                                                                             PLOT015
                                                                             PLOT016
     6TITLES/10HCOMPLEX AR.10HITHMETIC /.
                                                                             PLOT017
     7TITLE6/10HANGLE OF I.10HNCIDENCE
                                                                             PLOT018
     BTITLE7/10HCHARGE WEI+10HGHT (LBS) /+
                                                                             PLOT019
     9TITLE8/10HCBOT (FT/S:10HEC)
                                                                             PLOT020
      DATA TITLE9/10HPOISSON RA:10HTIO
                                               1.
                                                                             PLOT021
     1TITLEO(1)/10HDATE
                                                                             PLOT022
      TITLEO(2) = ADATE
                                                                             PLOT023
      YMAX=6. #X1
                                                                             PLOT024
      YMIN=-3. *X1
                                                                             PLOT025
      YLIN=(YMAX-YMIN)/X1
                                                                             PLOTO26
      XLMAX=90.
                                                                             PLOT027
      XLMIN=1.
                                                                             PLOT028
      IYYMAX=0
                                                                             PLOT029
      DO 4 I=1. IPMAX
                                                                             PLOT030
      IF (YY(I) -YMIN) 1.1.2
                                                                             PLOT031
    1 YY(I)=YMIN
                                                                             PLOT032
      GO TO 4
                                                                             PLOT033
    2 IF(YY(I)-YMAX)4,3,3
                                                                             PLOT034
    XAMY=(I)YY E
                                                                             PLOT035
      I YYMAX=I
                                                                             PLOT036
    4 CONTINUE
                                                                             PLOT037
      XMIN=XX(1)
                                                                             PLOT038
      XMAX=XX (IPMAX)
                                                                             PLOT039
      CALL SCAL (X2,XMIN,XMAX,XLMIN,XLMAX,XLIN)
                                                                             PLOT040
      IF (XMIN)5.10.10
                                                                             PLOT041
    5 IF (XMAX) 10.10.6
                                                                             PLOT042
    6 XS=XMIN
                                                                             PLOT043
      XN=1.
                                                                             PLOT044
    7 IF (ABS(XS) 1.E-36)9,9,71
                                                                             PLOT045
   71 IF(XS)8,9,100
                                                                             PLOT046
    8 XS=XMIN+X2+XN
                                                                             PLOT047
      XN=XN+1.
                                                                             PLOT048
      GO TO 7
                                                                             PLOT049
    9 XN=XN-1.5
                                                                             PLOT050
      YN=5.16
                                                                             PLOT051
      CALL CALCM1 (IPMAX.XX.YY.0.XMIN.XMAX.YMIN.YMAX.XLIN.YLIN.TITLE.0.BC PLOT052
     1DX+15+BCDY+0+FLOAT+18)
                                                                             PLOT053
      CALL SYMBL4(XN.YN..14.BCDY.90..14)
                                                                             PLOT054
      GO TO 11
                                                                             PLOT055
   10 CALL CALCM1(IPMAX.XX.YY.0.XMIN.XMAX.YMIN.YMAX.XLIN.YLIN.TITLE.0.BC PLOT056
     1DX.15.RCDY.14.FLOAT.18)
                                                                             PLOT057
   11 IF(IYYMAX)100.12.13
                                                                             PLOT058
   12 XS=(XMAX-XMIN)/X2-3.
                                                                             PLOT059
      GO TO 14
                                                                             PLOT060
   13 XS=(XX(IYYMAX)-XMIN)/X2+1.
                                                                             PLOT061
   14 CALL SYMBL4 (XS.9...14.TITLE1.0..20)
                                                                             PLOT062
   15 IF (Z1-1.)17.18.16
                                                                             PLOT063
   16 IF(Z1-3.)19.20.100
                                                                             PLOT064
```

PLOT065

```
17 CALL SYMBL4 (XS,8.7,.14,TITLE2,0.,20)
                                                                            PLOT066
                                                                             PLOT067
 18 CALL SYMBL4 (XS.8.7..14.TITLE3.0..10)
                                                                             PLOT068
                                                                             PLOT069
 19 CALL SYMBL4 (XS.8.7..14.TITLE4.0..30)
                                                                             PLOT070
                                                                             PLOTO71
 20 CALL SYMBL4 (XS,8.7..14.TITLE5.0..20)
    GO TO 21
                                                                             PLOT072
 21 CALL SYMBL4 (XS,8.4,.14.TITLE6,0.,20)
                                                                             PLOT073
                                                                             PLUT074
    XN=XS+.14+18.+.2
    CALL NUMBR (XN.8.4..14.THE.0..2)
                                                                             PLOTO75
    CALL SYMBL4 (XS.8.1..14.TITLE7.0..20)
                                                                             PLOT076
                                                                             PLOT077
     XN=XS+.14+19.+.2
     CALL NUMBR (XN.8.1..14.WCH.0..5)
                                                                             PLOT078
     CALL SYMBL4 (XS.7.8..14.TITLE8.0..20)
                                                                             PLOT079
                                                                             PLOT080
     XN=XS+.14+13.+.2
     CALL NUMBR (XN.7.8..14.CBOT.0..2)
                                                                             PLOT081
     CALL SYMBL4 (XS.7.5..14.TITLE9.0.,20)
                                                                              PLOT082
                                                                              PLOT083
     XN=XS+.14+13.+.2
     CALL NUMBR (XN.7.5..14.POISR.0..5)
                                                                              PLOT084
     CALL SYMBL4 (XS.7.2..14.TITLE0.0..20)
CALL CALCM1(0.0.)
                                                                              PLOT085
                                                                              PLOT086
                                                                              PLOT087
     RETURN
                                                                              PLOT088
 100 WRITE (6,22)
                                                                              PLOT089
     CALL CALCHI(0.0.)
                                                                              PLOT090
  22 FORMAT (1H1+10X+34HPLOTTING ERROR IN SUBROUTINE PLOT1 //)
                                                                              PLOT091
       END
                                                                               SCAL001
                                                                               SCALOOZ
C*****SUBROUTINE SCAL***
                                                                               SCAL003
С
                                                                               SCAL004
C
      SUBROUTINE FOR SCALING PLOTS
                                                                               SCAL005
C
                                                                               SCAL006
      SUBROUTINE SCAL (XSCALE, XMIN, XMAX, XLMIN, XLMAX, XLIN)
C
                                                                               SCAL007
                                                                                SCAL008
       DIMENSION X(6)
                                                                                SCAL009
       SXMAX=XMAX
                                                                                SCAL010
       SXMIN=XMIN
                                                                                SCAL011
     1 IJsl
                                                                                SCAL012
     2 Ir (XSCALE)3,3,6
                                                                                SCAL013
       DETERMINATION OF SCALE RANGE
                                                                                SCAL014
                                                                                SCAL015
 C
                                                                                SCAL 016
     3 M1=ALOG10 (ABS (XMIN))
                                                                                SCAL017
       M2=ALOG10(ABS(XMAX))
       IF (IABS (IABS (M1) - IABS (M2))-1)5:4+4
                                                                                SCAL018
                                                                                SCAL 019
     4 XM=M1
                                                                                SCAL 020
       XM=10.##XM
                                                                                 SCAL 021
        GO TO 7
                                                                                 SCAL.022
     5 XM=M1-1
                                                                                SCAL023
        XM=10. **XM
                                                                                 SCAL 024
        GO TO 7
                                                                                 SCAL 025
      6 XM=XSCALE
                                                                                 SCAL026
                                                                                 SCAL 027
        SCALE FACTORS ALLOWED
                                                                                 SCAL028
                                                                                 SCAL 029
      7 X(1)=1. *XM
                                                                                 SCAL030
        X(2) = 2.*XM
        X(3)=2.5*XM
                                                                                 SCAL 031
                                                                                 SCAL032
        X (4) =5. #XM
                                                                                 SCAL 033
        X(5)=7.5*XM
        X(6)=10.*XM
```

```
IF (XSCALE)8,8,24
                                                                               SCAL034
                                                                               SCAL 035
C
С
      AUTOMATIC SCALING
                                                                               SCAL036
                                                                               SCAL 037
                                                                               SCAL 038
C
    8 DO 21 I=1.6
                                                                               SCAL 039
      DETERMINATION OF SCALED MINIMUM
C
                                                                               SCAL040
                                                                               SCALC41
C
      XMIN=SXMIN
                                                                               SCAL042
                                                                               SCALG43
      XMAX=SXMAX
      NSCALE=XMIN/X(I)
                                                                               SCAL044
      IF (NSCALE) 11.9.12
                                                                               SCAL 045
    9 IF (XMIN) 11.13.10
                                                                               SCAL046
   10 XMIN=0.
                                                                               SCAL047
      GO TO 13
                                                                               SCAL048
   11 XN=NSCALE-1
                                                                               SCAL 649
      XMIN=XN+X(I)
                                                                               SCAL050
                                                                               SCAL051
      GO TO 13
   12 XN=NSCALE
                                                                               SCAL052
      XMIN=XN+X(I)
                                                                               SCAL053
C
                                                                               SCAL054
      DETERMINATION OF SCALED MAXIMUM
                                                                               SCAL 055
                                                                               SCAL056
C
                                                                               SCAL057
   13 NSCALE=XMAX/X(I)+1.
                                                                               SCAL058
      XN=NSCALE
      XMAX=XN+X(I)
                                                                               SCAL059
                                                                               SCAL060
C
      LENTH OF SCALE AXIS CALCULATED AT THIS POINT
                                                                               SCAL061
C
                                                                               SCAL062
      XLIN=(XMAX-XMIN)/X(I)
                                                                               SCAL 063
      IF (XLIN-XLMAX) 14,18,17
                                                                               SCAL064
   14 IF (XLIN-XLMIN) 15.18.18
                                                                               SCAL065
   15 IF (I-1) 35,16,16
                                                                               SCAL 066
   16 XM=XM#1.E+01
                                                                               SCAL067
      IJ=IJ+I
                                                                               SCAL068
      IF (IJ-4)7,7,23
                                                                               SCAL069
   17 IF(I-6)21,177,35
                                                                               SCAL070
  177 XM=XM+1.E-01
                                                                               SCAL071
      IJ=IJ+1
                                                                               SCAL072
      IF (IJ-4)7,7,23
                                                                               SCAL 073
   18 IF (XSCALE) 19+20+35
                                                                               SCALC74
   19 IF (ABS (XSCALE) -X(I))22.20.22
                                                                               SCAL075
   20 XSCALE=X(I)
                                                                                SCAL076
      GO TO 39
                                                                                SCAL077
   21 CONTINUE
                                                                                SCAL078
   22 XSCALE=ABS(XSCALE)
                                                                                SCAL079
      XMIN=SXMIN
                                                                                SCAL080
       XMAX=SXMAX
                                                                                SCAL 081
      GO TO 1
                                                                                SCAL082
   23 IF (XSCALE) 38+36+35
                                                                                SCAL 083
                                                                                SCAL.084
      FIXED SCALING
                                                                                SCAL085
C
                                                                                SCAL086
   24 DO 25 I=1.6
                                                                                SCAL087
      IF (XSCALE-X(I))25,26,25
                                                                                SCAL 088
   25 CONTINUE
                                                                                SCAL089
      GO TO 37
                                                                                SCAL090
C
                                                                                SCAL091
      DETERMINATION OF SCALE MINIMUM
                                                                                SCAL092
                                                                                SCAL093
   26 NSCALE=XMIN/XSCALE
                                                                                SCAL 094
       IF (NSCALE) 28 . 27 . 30
                                                                                SCAL095
   27 IF (XMIN) 28,31,29
                                                                                SCAL096
```

	28	XN=NSCALE-1	SCAL097
		XMIN=XN+XSCALE	SCAL 098
		GO TO 31	SCAL099
	29	XMIN=0.	SCAL100
		GO TO 31	SCAL101
	30	XN=NSCALE	SCAL 102
		XMIN=XN+XSCALE	SCAL103
C			SCAL104
С		DETERMINATION OF SCALED MAXIMUM	SCAL 105
С			SCAL 106
	31	NSCALE=XMAX/XSCALE+1.	SCAL107
		XN=NSCALE	SCAL 108
		XMAX=XN#XSCALE	SCAL109
C			SCAL110
С		LENGTH OF SCALE AXIS	SCAL111
С			SCAL112
		XLIN=(XMAX-XMIN;/XSCALE	SCAL113
		IF(XLIN-XLMAX)32,39,33	SCAL114
		IF (XLIN-XLMIN) 34,39,39	SCAL115
	33	XSCALE=XSCALE#1.E+01	SCAL116
		IJ=IJ+1	SCAL117
		IF(IJ=4)2,2,37	SCAL118
	34	XSCALE=XSCALE+1.E-01	SCAL119
		IJ=IJ+1	SCAL120
		IF(IJ-4)2,2,37	SCAL121
		STOP	SCAL122
	36	WRITE(6,200)XMAX,XMIN,XLIN,(X(I),I=1,6)	SCAL123
		GO TO 35	SCAL124
	37	WRITE(6,201)XMAX,XMIN,XLIN,(X(I),I=1,6)	SCAL125
	_	GO TO 35	SCAL126
	38	WRITE(6,202)XMAX,XMIN,XLIN,(X(I),I=1,6)	SCAL127
	7. .	GO TO 22	SCAL128
	4 00.	FORMAT (42x+36HAUTOMATIC SCALING CANNOT BE ACHIEVED/30x+5HXMAX=1E14	SCAL 129
	1	1.5.2X.5HXMIN=1E14.5.2X.5HXLIN=1E14.5//51X.17HSCALE FACTORS ARE//18	
		2X+6E14.5//)	SCAL 131
	401 _.	FORMAT (45x+32HFIXED SCALING CANNOT BE ACHIEVED/30x+5HXMAX=1E14.5+2	SCAL132
		X+5HXMIN=1E14.5+2X+5HXLIN=1E14.5//51X+17HSCALE FACTORS ARE//18X+6E	
		214.5//)	SCAL134
	402 _.	FORMAT (9X, 76HAUTOMATIC SCALING CANNOT ACHIEVE DESIRED SCALE FACTOR	SCAL135
		I.WILL TRY FIXED SCALING//30x,5HXMAX=1E14.5,2X,5HXMIN=1E14.5,2X,5HX	
		LIN=1E14.5//51X,17HSCALE FACTORS ARE//18X,6E14.5//)	SCAL137
	39	RETURN	SCAL138
		EN _L	SCAL139

```
C
      **** PTV PROGRAM ****
C
      SUBROUTINE PTV (TIMER2, T3, T4, T5, RAD, PTS, OPTION. COSA, RHOW, CWAT,
     1 T.V.VS)
C
      THIS SUBPROGRAM CONTROLS THE ITERATION FOR THE PEAK
      TRANSLATIONAL VELOCITY. PTV. IT IS THE ONLY SUBROUTINE OF THE PTV PROGRAM WHICH IS CALLED FROM THE MAIN PROGRAM.
C
C
C
      DIMENSION QX(1000) , QY(1000) , IS(2)
      DIMENSION G(6)
      DIMENSION A(50),C(50)
      COMMON /QXY/QX+QY
      COMMON /QIS/IS
C
      IF(OPTION.GT.O.) GO TO 10
      WRITE (6,580)
       WRITE (6,600) TIMER2, T3, T4, T5, RAD, PTS, OPTION, COSA, RHOW, CWAT
      WRITE (6,590)
C
      74.21457 IS A UNITS CONVERSION FACTOR
   10 VC=2. #74.21457/RHOW/RAD
      N=PTS
      T=T4
      DT=(T5-T)/FLOAT(N-1)
      IF (T.LE.O.) N=N-1
       IF (T.LE.O.) T=DT/2.
      IS(1)=2
      IS(2)=1
      G(2) = CWAT/RAD
      G(3)=TIMER2
      G(5) = SQRT(TIMER2-T3)
      G(6) = SQRT (TIMER2)
C
      INITIAL SEARCH FOR MAXIMUM VELOCITY
      DO 40 I=1.N
      G(1)=T
      V=VC*FV(G)
      A(I)=T
      C(I)=V
      VS=2. *COSA*V
      IF (OPTION.LE.O.) WRITE (6,610) T.V.VS
      T=T+DT
   40 CONTINUE
       ITERATION FOR PTV
      DETERMINE THE MAXIMUM VELOCITY FROM C ARRAY
      CALL XMAX(C.N.M.M1)
      (1M) A=SA
      C2=C(M1)
      A(1)=A(M)
      C(1)=C(M)
      SA=(S)A
      C(2)=C2
      DA=DT
      T=A(1)-1.8*DA
      IF (T.LE.O.) T=DA/5.
      DT=DA/2.
      DO 45 I=3.10
       G(1)=T
      V=VC#FV(G)
       A(I)=T
      C(I)=V
      VS=2. *COSA*V
       IF (OPTION.LE.O.) WRITE(6,610) T.V.VS
```

```
T=T+DT
     45 CONTINUE
        N=10
        IF (IABS (M-M1) .LT.3) GO TO 55
        T=A(2)-0.8+DA
        IF (T.LE.O.) T=DA/5.
        DT=DA/3.
        DO 50 I=11.16
        G(1)=T
        V=VC*FV(G)
        A(I)=T
        C(1)=V
        VS=2. #COSA#V
        IF (OPTION.LE.O.) WRITE (6.610) T.V.VS
        T=T+DT
    50 CONTINUE
       N=16
    55 CONTINUE
       DO 75 JJ=1.6
       CALL XMAX (C.N.M.M1)
       IF (JJ.LT.3) GO TO 62
IF (ABS ((C(M)-C(M1))/C(M)).LT.0.001) GO TO 110
       IF (JJ.EQ.6) GO TO 120
    62 N=10
       T1=A(M)
       T2=A(M1)
       V1=C(M)
       V2=C(M1)
       A(9)=T1
       A(10)=T2
       C(9)=V1
       C(10)=V2
       DT=ABS (T1-T2) /5.
       I I = 1
       DO 70 I=1.8
       T=T1+DT#FLOAT((I-10)/2#II)
       IF (T .LE. 0.0) GO TO 64 G(1)=T
       V=VC*FV(G)
       VS=2. *COSA*V
       GO TO 66
       WHEN T IS LESS THAN ZERO SET TO ZERO.
    64 T = 0.0
   V = 0.0
66 IF (OPTION .LE. 0.0) WRITE (6.610) T.V.VS
       A(I)=T
       C(1)=V
       II=-1*II
   70 CONTINUE
  75 CONTINUE
110 V=C(M)
       T=A(M)
       VS=2. #COSA#C(M)
       IF (OPTION.LE.O.) WRITE(6.620) A(M),C(M).VS
       RETURN
  120 V=C(M)
       T=A (M)
      VS=2. +COSA+C(M)
      VS1=>. +COSA+C(M1)
      WRITE(6,630) T.V.VS.A(M1).C(M1).VS1
      RETURN
C
  580 FORMAT (1H1 . 10X . 30HTRANSLATIONAL VELOCITY PROGRAM )
```

```
590 FCRMAT(1H0.5X.45HITERATION FOR PEAK TRANSLATIONAL VELOCITY PTV //
     1 12x,9HTIME(SEC),8X,16HVELOCITY(FT/SEC) ,3X,25HVERTICAL VELOCITY(F
  2T/SEC) /29X+16HTARGET SUBMERGED,7X,17HTARGET AT SURFACE )
600 FORMAT(1H0,5X+23HINPUT TO SUBROUTINE PTV // 10X+
     1 45HTIMER2.T3,T4.T5.RAD.PTS.OPTION,COSA.RHOW.CWAT //1P5E14.5/
     2 1P5E14.5 )
  610 FORMAT (1P3E22.6)
  1 1P3E22.6)
  630 FORMAT(1H0,42H*** WARNING ITERATION DID NOT CONVERGE *** .5X.
     1 35HMAXIMUM AND NEAREST VALUE ARE GIVEN //
     1 12x,9HTIME (SEC) +8X,16HVELOCITY (FT/SEC) +3X,25HVERTICAL VELOCITY (F 2T/SEC) /29X,16HTARGET SUBMERGED,7X,17HTARGET AT SURFACE /
     3 (1P3E22.6))
Ç
      END
      FUNCTION FV(G)
C
       THIS SUBPROGRAM SETS UP THE INTEGRATION FOR
C
       THE TRANSLATIONAL VELOCITY V
C
C
       DIMENSION G(6)
       EXTERNAL F1
       DATA N/18/
C
       NN=FLOAT(N)+G(1)+G(2)/8.
       (B.N) OXAM=NN
       NN=MINO (NN+N)
       X=G(1)-8./G(2)
       IF (X.GT.G(3)) GO TO 43
       Z1=G(6)
       IF(X_*GT_*O_*) Z1=SQRT(G(3)-X)
       IF(G(1).GT.G(3)) GO TO 40
       G(4) = -1.0
       Z2=SQRT(G(3)-G(1))
       INTEGRATION FOR T .LE. TIMER2
FV=-FGI(Z1,Z2,NN,F1,G)
C
       RETURN
   40 Z2=0.
       Z3 = SQRT(G(1) - G(3))
       IF(G(3).EQ.0.) GO TO 45
       G(4) = -1.0
       N1=Z1/(Z1+Z3) *FLOAT (NN) +2.0
       NNN=Z3/(Z1+Z3) + FLOAT(NN)+2.0
       INTEGRATION FOR INTERVAL WHICH INCLUDES TIMER2
C
       V1=-FGI(Z1,Z2,N1,F1,G)
       G(4) = 1.0
       \'?=FGI (Z2,Z3,NNN,F1,G)
       FV=V1+V2
       RETURN
   43 Z2=SQRT (X=G(3))
       Z3 = SQRT(G(1) - G(3))
   45 G(4)=1.0
       INTEGRATION FOR T LARGER THAN TIMER2 BUT THE INTERVAL DOES NOT INCLUDE TIMER2.
       FV=FGI(Z2.Z3.NN.F1.G)
       RETURN
       END
```

```
FUNCTION F1 (Z.G)
      THIS SUBPROGRAM CALCULATES THE PRODUCT INCIDENT PRESSURE *
      REDUCED STEP WAVE ACCELERATION BY CALLING THE INTERPOLATION
      PROGRAMS VTAB AND PTAB.
      DIMENSION QX(1000) ,QY(1000) , IS(2)
      DIMENSION G(6) . QQX(120) . QQY(120)
      COMMON /QXY/QX+QY
      COMMON /QIS/IS
      REDUCED STEP WAVE ACCELERATION OF A CYLINDER
      DATA (QQX(I) • I = 1 • 106) /0 • • • 0125 • • 025 • • 0375 • • 050 • • 075 • • 100 •
     1 •125 • 150 • 175 • 200 • 225 • 250 • 275 • 300 • 325 • 350 • 375
     2 .4000, .425, .450, .475, .500, .525, .550, .575, .600, .625, .650,
     3 .675,.700,.725,.750,.775,.800,.825,.850,.875,.900,.925,.950,
     4 .975,1,00,1.05,1,10,1.15,1,20,1.25,1,30,1.35,1.40,1,45,
     5 1.50,1,55,1.60,1.65,1.70,1.75,1.80,1.85,1.90,1.95,2.00,
     6 2.05,2.10,2.15,2.20,2.25,2.30,2.35,2.40,2.45,2.50,2.55,
     7 2.60,2,65,2,70,2,75,2,80,2,85;2,90,3,00,3,10,3,2,3,3,3,4,
     8 3.5,3.6,3.7,3.8,3.9,4.0,4.2,4.4,4.6,4.8,5.0,5.25,5.50
     9 5.75.6.00.6.25.6.5.7.0.7.5.8.3 /
      DATA (QQY(I) +I=1+60) / 0:0, .198193,.275935,.332694,.378180,
     1 .448836 .. 502189 .. 544000 .. 577342 .. 604111 .. 625589 .. 642701 .
     2 .656143, .666457, .674079, .679365, .682612, .684070, .683955,
     3 .682452, .679721, .675904, .671127, .665499, .659120, .652078,
     4 .644453, .636315, .627730, .618755, .609444, .599844, .589999,
     5 .579949 . .569730 . .559374 . .548913 . .538372 . .527777 . .517151 .
     6 .506515 . .495887 , .485284 , .464215 , .443417 , .422977 , .402968 ,
     7 .383447,.364460,.346042,.328218,.311008,.294424,.278471,
     8 .263152, .248465, .234404, .220960, .208124, .195881 /
      DATA (QQY(I) • I=61,106) / •184219 • •173122 • •162573 • •152555 •
     1 .143051 .. 134041 .. 125509 .. 117435 .. 109801 .. 102590 .. 095782 .
     2 .089361,.083308,.077608,.072242,.067196,.062453,.057999,
     3 .053818,.049897,.046221,.039556,.033725,.028637,.024209,
     4 .020368,.017044,.014177,.011712,.009599,.007795,.006260,
     5 .003863,.002172,.001009,.000230,-0.000267,-0.000619,
     6 -0.000774,-0.000804,-0.000767,-0.000696,-0.000606,
     7 -0.000430,-0.000297,-0.000206 /
C
      IF(G(4).GT.0.) GO TO 20
      X=G(3)-Z*Z
      GO TO 30
   20 X=G(3)+Z*Z
   30 XD=(G(1)-X)+G(2)
      IF (Z.GT.G(5)) GO TO 35
      P=PTAB(X+QX+QY+IS(2))
      GO TO 40
   35 P=VTAB(X+QX+QY+IS(2))
   40 F1=Z*P*VTAB(XD+QQX+QQY+IS(1))
      RETURN
```

END

```
SUBROUTINE XMAX(B,N,M,M1)
C
      THIS SUBPROGRAM DETERMINES THE LOCATIONS OF THE TWO LARGEST
C
      ABSOLUTE VALUES OF MEMBERS OF THE B ARRAY.
C
C
C
      DIMENSION R (50)
      X=ABS(B(1))
      M=1
      DO 10 I=2.N
      IF(ABS(B(I)).LT.X) GO TO 10
      M = I
      X=ABS (B(M))
   10 CONTINUE
      M1=1
      IF (M.EQ.1) M1=2
      X=ABS (R (M1))
      DO 50 I=5'N
      IF (ABS(B(I)).LT.X) GO TO 20
      IF (I.EQ.M) GO TO 20
      Ml=I
      XTABS (B(M1))
   20 CONTINUE
      RETURN
      END
       FUNCTION VTAB (X,Y,Z,K)
C
       THIS SUBPROGRAM PERFORMS A SECOND ORDER LAGRANGIAN INTERPOLATION
C
       THE INDEPENDENT VARIABLE IS STORED IN THE Y ARRAY IN INCREASING
C
               THE DEPENDENT VARIABLE IS STORED IN THE Z ARRAY.
C
       ORJER.
       X IS THE POINT AT WHICH THE FUNCTION IS TO BE EVALUATED. K IS THE NUMBER OF THE ELEMENT IN THE Y ARRAY WHICH IS FIRST
C
       COMPARED WITH X.
C
C
Ċ
       DIMENSION Y(1000), Z(1000)
       IF (X.LE.O.) GO TO 50
       DO 10 I=K,1000
       J=I
       IF(Y(I).GT.X) GO TO 20
   10 CONTINUE
    (1-L+E) 0XAM=L 05
       DO 30 I=1.1000
       IF (Y(J).LT.X) GO TO 40
       J=J-1
       IF (J.LT.3) GO TO 40
   30 CONTINUE
    40 K=J+1
       IF(Z(J).EQ.Z(K)) GO TO 60
       L=J-1
       A=(X-Y(K))/(Y(J)-Y(L))
       C=(X-Y(L))/(Y(K)-Y(J))
       IF ((A.LT.-5.0).OR. (C.GT.5.0)) GO TO 60
       B=(X-Y(J))/(Y(K)-Y(L))
       VTAB=C+(B+Z(K)-A+Z(J))+A+B+Z(L)
       RETURN
    50 VTAB=0.
       RETURN
    60 VTAB=Z(J)+(X-Y(J))*(Z(K)-Z(J))/(Y(K)-Y(J))
       RETURN
       END
```

A-34

```
FUNCTION PTAB (X+Y+Z+K)
      THIS SUBPROGRAM PERFORMS A SECOND ORDER LAGRANGIAN INTERPOLATION
CCCC
      WITH PROVISIONS FOR HANDLING A SINGULARITY.
      FUNCTION ARGUMENTS ARE THE SAME AS IN VTAB .
      DIMENSION Y(1000), Z(1000)
      IF (X.LE.O.) GO TO 50
      DO 10 I=K,1000
      J=I
      IF (Y(I).GT.X) GO TO 20
   10 CONTINUE
   20 J=MAX0(3,J-1)
      DO 30 I=1,1000
      IF (Y(J).LT.X) GO TO 40
      J=J-1
      IF (J.LT.3) GO TO 40
   30 CONTINUE
   40 J=J+1
      JJ=J
      THE FOLLOWING THREE STATEMENTS PROVIDE FOR EXTRAPOLATION
C
      AROUND A SINGULARITY.
C
      IF (ABS(Z(J)).GT.1.0E20)JJ=J-2
      IF (ABS(Z(J-1)).GT.1.0E20)JJ=J+1
      IF ((JJ.EQ.J).AND.(ABS(Z(J-2)).LT.1.0E20)) JJ=J-1
C
      J≈JJ
      K=J+1
      IF (Z(J).EQ.Z(K)) GO TO 60
      Label
      A=(X-Y(K))/(Y(J)-Y(L))
      C=(X-Y(L))/(Y(K)-Y(J))
      IF ((A.LT.-5.0).OR.(C.GT.5.0)) GO TO 60
      B=(X-Y(J))/(Y(K)-Y(L))
      PTAB=C+(B+Z(K)-A+Z(J))+A+B+Z(L)
      RETURN
   50 PTAB=0.
      RETURN
   60 PTAB=Z(J)+(X-Y(J))*(Z(K)-Z(J))/(Y(K)-Y(J))
      RETURN
      END
```

APPENDIX B SAMPLE PROGRAM OUTPUTS

0ATE 06/29/71

TABLE B.1 FULL OUTPUT FOR A SPHERICAL WAVE BOTTOM REFLECTION

HOTTOM PEFLECTION RUN NUMHER I INPUT

BIGH= .20000006+04 Da	SINT	.9417419E.00
PINT.LE.O.)	COSTH	.3363364E+00
DEPTH OF WATER IN FT OEPTH OF FXELGIOUS IN FT OEPTH OF FXELGIOUS IN FT OEPTH OF GAUGE IN LET WEIGHT OF FXELGIOUS IN PAT WEIGHT OF FXELGIOUS IN PAT WEIGHT OF FXELGIOUS IN WATER WEIGHT OF FXELGIOUS IN WATER IN FT/SEC WEIGHT OF FXELGIOUS IN WATER IN FT/SEC WEIGHT OF SALANE IN GAYGE COFFECTION OF SAME PRESCUE FORMULA IN SECONDS WEIGHT OF SAME PATENT FORMULA OUNARD OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WEIGHT ON TO SAME PATENT FORMULA OUNARD OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WENDER OF SUDUVISIONS OF THE A WENDER OF SUDUVISIONS OF THE A WENDER OF SUDUVISIONS OF THE A WOMER OF SUDUVISIONS OF THE A WENDER OF SUDUVISIONS OF THE A CALLING PARAMETER OF THE A WENDER OF SUDUVISIONS OF THE A WENDER OF SUDUVISIONS OF THE A WENDER OF SUDUVISIONS OF THE A CHARACTERISTIC COUPPESSIONS A WENDER OF STELLER OF THE CONTON THE SECONDS WENDER OF SHEALMARL IN THE SOME A WENDER OF SHEALMER OF MOTTON IN WEIGHT OF SECONDS WENDER OF SHEALMER OF MOTTON IN WITH SECONDS WENDER OF SHEALWER OF MOTTON IN WITH SECONDS WENDER OF THE CONSTANT OF MOTTON IN WITH SECONDS WENDER OF THE CONSTANT OF MOTTON IN WITH SECONDS W	CONSTANTS OF THE CALCULATION 2 COSAL	.3347480F+00
THE THE FEATURE HE TO BE THE FEATURE HE WATER HE TO BE THE FEATURE HE THE THE FEATURE HE THE FEATURE HE THE FEATURE HE THE FEATURE HE THE THE THE FEATURE HE THE FOONSTANT IN THE THE FOONSTANT IN THE THE FEATURE HERE FEATURE HE THE FEATURE HERE FEATURE HERE FEATURE HERE FEATURE HERE FEATURE	CONSTANTS D2	.3571064E.00
DEPTH OF WATER IN FT DEPTH OF EXPLOSION IN FT DEPTH OF GAUGE IN FT DEPTH OF GAUGE IN FT VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC VELOCITY OF SUPPRESSURE FORMULA IN PSI EXPONENT OF SW PRESSURE FORMULA IN PSI EXPONENT OF SW PRESSURE FORMULA IN SI EXPONENT OF SW PRESSURE FORMULA IN MULTIPLES OF OURHATION BATER IN SOUND AND FOLDHOLD IN SI EXPONENT OF SW TIME CONSTANT FORMULA IN SI EXPONENT OF SW TIME CONSTANT FORMULA IN SI EXPONENT OF SW TIME CONSTANT FORMULA IN SI EXPONENT OF SW TIME CONSTANT FORMULA IN SI EXPONENT OF SW TIME CONSTANT FORMULA IN SI EXPONENT OF SW TIME CONSTANT FORMULA IN SI PRINT CONTROL PARAMETER (23 = n * MEANS PLOTS, CAMPAC ANGLE OF HOLOR WAVE IN PEGRES PRINT CONTROL PARAMETER (23 = n * MEANS PLOTS, CHAPAC ANGLE OF PRESSURE WAVE IN FEYSEC PRINT CONTROL DARAMETER (10 F FT/SEC PRINT CONTROL OF STONLEY WAVE IN FT/SEC PRINT CONTROL OF STONLEY WAVE IN FT/SEC PRINT CONTROL OF STONLEY WAVE IN FT/SEC PREDUCED TIME OF PURCU'SON ARHIVAL REDUCED TIME OF PURCU'SON ARHIVA	OEZFRA	100m000E+03
DEPTH OF WATER DEPTH OF SAUGE HOPITONIA LOIS WELDCITY OF SO VELOCITY OF SO UENSITY OF HUT CONFITTONIA TER COFFICIENT OF SO CANTANA DESCRIPTION AFTER NUMBER OF SOUL DESCRIPTION AFTER OF STATE ANGLE OF INCID PRINT CONTROL PRINT CONTROL PRINT CONTROL PRINT CONTROL PRINT CONTROL PRINT CONTROL PRINT CONTROL PRINTED TAME OF SHEAM ANGLE OF S	SMALLH	13000005+04

TABLE B.1 CONTINUED

POSENBAUM METHOD FAST NON-RIGID HOTTOM .2205490E=02 .R9H3BB7E+00

IMPULSE ENERGY FLUX MEDUCED PUSIMP	• • •	• • • •	.4816675E+01 .1606213E+00 .2235703F+01	.4816675E.01 .1606213E.00 .2235703E.01	.7936523E+01 .2280082E+00 .3683808E+01	.7936523F+01 .22R0082E+00 .36R3R0RE+01	.9158816E+01 .2418550E+00 .4496943E+01	.9158816E+01 .2418550E+00 .4496943E+01	.6577165E+01 .1957243E+00 .4496943E+01	.6577165F+01 .1957243E+00 .4496943E+01	.4898913E+01 .1762299E+00 .4496943E+01	.4898917E+01 .1762299E+00 .4496943E+01
PRESSURE PSI	.47111RZE.03	.3791604E+03	.3051518E+03	•2455RS0E+03	.1976523E+03	.1590725E • 03	-,2520864E+03	-,2032497E+03	-,1638740E+03	1321264E+03	-,1065292E+03	- . 8589092E+02
T V E SECONDS PRE PRE PCSITE	•••	.6302043E-02 0.	.1260409E-01 0. .4816675E-01	.1890613E-01 0. .4816675E-01	.2520A17E-0. 0. .7936523E+01	.3151021E-01 0. .7936523E+01	.3781224E-01 0. .9688369E+01	.4411430E-01 0. 9688369E+01	.5041634E-01 0. .9688369E-01	.55/1838E-01 0. .9688369E+01	.6302043E-01 0. .9688369E+01	.6932247E=01 0. .9688369E+01
PD VMID REDUCED EFLUX	.4711182E+03 0. 0.	.3791604E+03 0. 0.	.30515186.403 0. .74553R2E-01	.2455890E+03 6. .74553R2E-01	.1976523F+03 0. .1058320F+00	.1590725E+03 0. .1058320E+00	.1280230F+03 0. 1122591E+00	.1030341E+03 0. .1122591E+00	.8292281E+02 0. .9084715E-01	.6673705E+02 0. .9084715E-01	.53710616.02 0. .8179866F-01	.4322680E.02 0. 8179866E.01
CONVOLUTION- FI/THETA PS REDUCED IMPULSE	•••	• • • •	0. 0. .2235703£+01	0. 0. .2235703£+01	0. 6. 3683604E+01	n. n. •36∺3∺08E •01	0. 3801094E+03 .4251146E+01	0. 3062838E+03 .4251146E+01	0. 2467968E+03 .3052850E+01	0. 1988634E+03 .3052850E+01	0. 1602398E+03 -2273874E+01	0. 1291177E+03 .2273874E+01
STEPWAVE RESPONSE STPW PHOT HESTOUF	200	• • •	• • • •	• • • •	•••	•••	•••	•••		• • •	• • •	•••
REDUCED TIME SECCID ROW THIRD ROW	.10000°0E+01	.10044115+01	,100882E+01	•1013233E+n1	.10176446.01	-1022055E+01	•1026466E+01	+1030877E+01	•10352RAF •01	•1 J34699E•01	.10441106.01	•1048521E+01

	,					
• 1036732E+01	• 6	•0	.3478933E+02	.7562451E-01	6925,090F+02	300,700,000
		1040402E+03	7701,000	0.		16793385+00
.1057343E.01	•		10-36846616	.9688369E+01		.4496943E+01
10+36+0-10-1	• •	0.	.2799878E+02	.8192655E-01	5583455F+02	TOTOTOR.
	• [-838333E+02 -1767488E+01	0. .7797489F=01	0.		.1679918F+00
		10000		• Y088367E+0}		.4496943E+01
		איניאר טר פאסט	OF GROUNDWAVE PEAK			
.1061754E+01	.834H264E+00	•0	225 136RF 402			
	.3402501E+03	6755106E+02	0.	•8866460E-01	.3452327E+03	.3918525E+01
10661655	:	TO + Serentare	.8651140E-01	.1041359E+02		• 4833562F • 01
	19487325+00	.9159359E-01	.1A13532E+02	. 94530A65.		
	0.	1.344W117E+02	.5704848E+00	.5128732E+00	.1600366E+03	•3918525E+01
.1070576F±01	7 6 000 5 7	10+3470470	.8651140E-01	.1041359E+02		•1863832E+00
1	.4308035E+00	.166"127F+00	.1459547E+02	1000125		• +033366E +01
	0 - 1331540E + 03	4385044F+02	.4768 47E+00	4504035F. 90	.1038651E+03	.6211721E+01
	•	• 2843225E+01	.1060+27E+00	.1270679E+02		.2284621E+00
•10/408/E•01	.4142390F+00	•2170511E+00	-117.6575.03			.5897969E+01
	.4217797E+62	3534n97E+02	-4306137F400	•1071347E+00	.6458357E+02	.6211721F+01
	•	· 2883225+01	10604275+00	.4142390E+00		.2284621F+00
.1079292E+01	. ************************************	7000		20+36,00,31.		.5897969E+01
	. 137895AF	00+12/242620	.9453751E+01	.1134368E+00	44744355	
		20+4K401+62+	.4005603E+00	*3888864E+00	20+36566/++•	.7100237E+01
10.730.000.00		[H+346:0ctor.	.1046900E+00	.1359531E+02		.2341655E+00
10+350-50	. 3698423F+00	.276773HE+30	74084475401			• 63103825 • 01
	.4351578E+02	229461 1F+112	10+3/8-001 -3787600E+00	•1197388E+00	.2417912E+02	.7100237F+03
	• 6	.3245634F +01	•1086900E+00	. 35053E+00		•2341655E+00
•1088>29€+01	. 3548943F+00	20,3100,1000		Z0+316666014		.6310382E+01
	· 7884579E+02	186 HOARD	.6123345E+01	.1250409E+00	15479675403	
	.0	• 444574 16451 • 444574 16451	-3419620E+00	.3548A63E+00	30.3.0	0.7*05677E+01
10926 316 . 01			00+14941401.	.1396074E+02		. 4351493E+00
TO - 175 :: 34 :: 1 -	. 3427046E+00	•3034280E+110	. 4924] 42F 401	100.000		.0+80000+E+01
	50+4IF #11510	1489842F + 02	• 3445025F+00	343464E+O	.8204032E+01	.7465677E+01
	•	· 3445244. +01	.1091466E+00	13960745400		.2351493E+00
La office 1901 .	. 3325676F + UU	STORESHOOTE .		30		.6480004E+01
		004 170 32 100	. 3966215E+01	.1386449E+00	-2374752F+01	454,000
	• 0	• 351564[F+0]	-33/415/E+00	.3325626E+00		2353,70C+01
11014578461	2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		00434/47411	.1406929E+02		65303BEE+00
	10.432154074	·31370225+30	.3192047E+01	14494706 400		TO SERVICE OF THE
	•0	3514401	.32H0921E+00	•3239583E+00	-198962E+01	.7574220E+01
i i		16+31+30+16+01	.1091924E+00	.1*n6929E+n2		• 6352479E+00
10-4000011.	. 1165512F + 00	•3149234£+00	256 HQ00F 403			.6530385E+01
	./^15631E+00	7794471E+01	.3201229F+06		4463819E+01	.7555457F+01
	•	.3507025E+01	•1091902E+00	-3103532F+00		. 2352432E+00
				2011011.011		.6532701E+01
						1

TABLE B.1 CONTINUED

NOT REPRODUCIBLE

TABLE B.1 CONTINUED

TRANSLATIONAL VELOCITY PROGRAM

INPUT TO SUBPOUTINE PTV

TIMER2.T3.T4.T5.KAD.PTS.OPTION.COSA.RHUW.CWAT

0. -6.30204E-03 0. 6.30204E-02 2.20000E+01 3.00000E+01 1.03000E+00 4.90000E+03

ITERATION FOR PEAK TRANSLATIONAL VELOCITY PTV

AL VELNCITY (F	AT SUR	89494E-0	.444259E+0	.965567E+0	.067475E+0	.942351E+0	.743810E+0	.561135E+0	.391456E+0	.232191E+0	0+3022690	.616284E-0	472898E-0	*463583E-0	.563919E-0	.763459E-0	.05307CE-0	.417387E-0	.850148E-0	.345064E-0	.890818E-0	.484232E-0	.120477E-0	.793493E-0	.501260E-0	.239639E-0	.004779E-0	.953062E-0	.079947E-0	.403451E-0	.590121E+0	.861656E+0	.013173E+0	. U5084UE+U	.055005E+0	9930402+0	804376540	.052148F+0	049530540	057914F+0	0707346	2.062645E+00	.071043E+0	066274E+0	.070426E+0	070625E+0	.070867E+0	-070787E+C	.070966E+0	
CITY (FT/SEC	GET SUBMERG	.525452E-0	.147045E+0	.922024E+0	.073522E+0	.887512E+0	.592360E+0	.320794E+0	.068548E+0	.831783E+0	.620060E+0	.429563E+0	.259587E+0	.109541E+0	.757967E-0	.567997E+0	.51192RE-0	.566918E-0	.723656E-0	.972796E-0	.297510E-0	.693076E-0	.152316E-0	.666219E-0	.231784E-0	.842856E-0	.493711E-0	.182303E-0	.038491E-0	.546200E-0	.363885E+0	.767551E+0	.992797E+0	0.7255C.00	.054967E+0	0403/00/040	4031334E+0	050738F+0	0765775+0	059309F+0	078365E+0	3.0663425+00	078826E+0	.071737E+0	.077909E+0	.078206E+0	.078566E+0	.078445E+0	.078712E+0	
TIME (SEC)		.086559E=0	r 259677E-0	.432795F-0	.615914F-0	.779032F-0	.195215F-0	.412527F-0	·629839E-0	.847150F-0	.064462E-0	.281774F-0	499086E-0	.716398F-0	.933709E-0	.151021F-0	.368333F-0	.585645E-0	.802957F-0	.020269E-0	.237580F-0	.454892F-0	.672204F-0	.889516E-0	.106828F-0	.324139F-0	.541451F=C	.758763E-0	.976075F-0	.193387F-0	.694301F-0	.780860F-0	.8674195-0	• 953978E=0	0-3155040	•127096E=0	0146666	0-1120061	4755265-0	562817F=0	3461396-0	40756	214752F-0	.823591E-0	-084365F-0	1104435-0	-319062E-0	-136520F-0	292985	

TABLE B.1 CONTINUED

2.070909E+00 2.071028E+00 2.070995E+00 2.071054E+00	VTd	2.071054E+00
3.078628E+00 3.078805E+00 3.078755E+00 3.078843E+u0	VTG	3.07A843E+00
/*162597E=03 7*26697E=03 7*188675E=03 7*240830F=03	************	7.240A30F-03

TABLE B.2 SHORT OUTPUT FOR A SPHERICAL WAVE BOTTOM REFLECTION

HOTTOM REFLECTION RUN NUMBER 2

DATE 06/29/71

• • • • • • • • • • • • • • • • • • • •	STEPS= .10000000E+02 DURAT= .4658584E+01 THOVAL= 0. XI = .1000000E+02 XZ = .1000000E+02 SLOPE .450000E+02 ZI = .0 ZZ = .0	THEM .35013398E.02 CTSONM .48865514E.00 RSM .2816537E.01 ALPHAM .815358929E.02 BETHAM 28.711 SHD2R2M .10410370E.01 THEONEM -0.10410370E.01 THEONEM -0.00000E.01 ANGAM -0.0000E.01 EEM .1000000E.01 RACTU .39910083E.01 RACTU .39910083E.01 RACTU .39910083E.01 RACTU .39910083E.01 RACTU .22001857E.03 PACTM .22001857E.01 THETAM .22001857E.01 THETAM .22001857E.01	SINTH .5737678E+00
OEPTH OF WATER IN FT DEPTH OF GAUGE IN FT HORIZONTAL OISTANCE BETWEEN CHARGE AND GAUGE IN FT HORIZONTAL OISTANCE BETWEEN CHARGE FOR SLOPING BOTTOM CALCULATION GEOMETRY CHANGEO FOR SLOPING BOTTOM DEPTH OF WATER IN FT HORIZONTAL DISTANCE BETWEEN CHARGE AND GAUGE IN FT HORIZONTAL DISTANCE BETWEEN CHARGE AND GAUGE IN FT HORIZONTAL DISTANCE BETWEEN CHARGE IN LB (OR KT) VELOCITY OF SHOUND IN WATER IN FT/SEC VELOCITY OF SHORTOM IN BOTTOM IN FT/SEC VELOCITY OF SHORTOM IN BOTTOM IN FT/SEC OENSITY OF WATER IN GM/CC COEFICIENT OF SW PRESSURE FORMULA IN PSI PRINT OUT CONTROL PARAMETER (25.GT.0. FOR SHORTER PRINT DUT) EXPONENT OF SW PRESSURE FORMULA COEFICIENT OF SW THME CONSTANT FORMULA IN SECONDS	NUMPER OF SUBOLVISIONS OF THETA OURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA OESTRED RATIO BETWEEN INCIDENT AND CRITICAL ANGLE SCALING PARAMETER FOR Y—AXIS (PSI PER INCH OF GRAPH) SCALING PARAMETER FOR X—AXIS (MICROSECONDS PER INCH OF GRAPH) SLOPE OF BOTTOM IN DEGREES PARAMETER THÂT SELECTS THEORY ARRIVAL TIME OF GRDUNO WAVE IN MICRDSECONDS PLOT CONTROL PARAMETER (23 = 0. MEANS PLOTS ARE WANTED) CYLINDER RADIUS IN FT CONTROL PARAMETER (FULL PRINT OUT IN SUBROUTINE PTV IF APRINT.LE.0.) PRINT CONTROL PARAMETER (FULL PRINT OUT IN SUBROUTINE PTV IF APRINT.LE.0.)	ANGLE OF INCIDENT WAVE IN DEGREES VELDCITY OF STONLEY WAVE IN FT/SEC POISSON MATIO REGUCED TIME OF SURFACE REFLECTION REGUCED THE OF SURFACE REFLECTION CRITICAL ANGLE OF SHEARWAVE IN OEGREES CRITICAL ANGLE OF SHEARWAVE IN OEGREES REGUCED ARRIVAL TIME OF CRITICALLY REFRACTED SHEAR WAVE REFLECTION COEFFICIENT ANGLE OF SHEARWAVE IN ROTTOM IN DEGREES REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME OF PRECURSOR ARRIVAL REGUCED TIME CONSTANT OF INCIDENT WAVE ACTUAL SW TIME CONSTANT OF MILLISECONDS REDUCED TIME CONSTANT OF MILLISECONDS REDUCED TIME CONSTANT OF WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAVE REDUCED TO WAV	CONSTANTS OF THE CALCULATION CONSTANTS OF THE CALCULATION COSTH .3298469E+01 =.318198/E+01 .8578124E+00 .9642855E+00 .8190180E+00

	IMPULSE	0. 0. 8010188E-05 8010188E-05 1942298E-04 .2814175E-04		.EA14175E-04 ,7278453E-03	14324815-02	.1432481E-02	.2013036E-02	.2491698E-02	.2491698E-02	.2886992E-02	.3214532E-02	.3214532E-02	.3487805E-02	.3719227E-02	.3922404F-02	.3922404E-02	.4122569E=02	.4146718E-02	.4146718E=02	.4173568E-02	.4203617F-02	.4203617E-02	4237497E=02	.4275648E=02	.4275648E-02	.4318904E-02	.4318904E-02	43671595-02	4410140F=02	.4419140E-02
	PRESSURE PSI	0.2459025E+01 .3420556E+01 .3393037E+01 .3935006E+01 .2553975E+01		.2497786E+03	.2057645E+03	.1695282E+03	.1539121E+03	12698015*03	.1154241F +03	1050040F-03 9563384E+02	.8724250€+02	.7977633E+02	6752694E+02	.6279942E+02	.5703784E+02	.5738554E+02	. 6467842E+02	.72155366+02	7578708E+02	.8497967E+02	.8963300E+02	.9586691E+02	10163995+03	1149307E+03	.1223517E+03	.1294394E+03	.1365778E+03	14282026+03	14871956+03	.1449190E+03
# ₩ € € € € € € € € € € € € € € € € € €	TIME SECONDS	1109371E-04 9384164E-05 7674613E-05 5965162E-05 425512E-05 9364102E-05		.8731405E-96	. 4292242E = 03	7711343E-0	.9420894E=05	.) 284000E-04	454955E=0	17968655-04	.1967R20E-04	.2138775E-04	.2480685E-04	2651640E-0	2822595E-04	.3164505E-04	.3335460E=04	.3370A30E-04	33885155-04	3423A85E-04	-3441570E-04	.3454755E-04	3476940E=04	.3512310E-04	.3529995E-04	.3547480E-04	.3565365=04	.3583650E-04	36107335	6105E-0
ROSFNBAUM METHOD HOTTOM WITH FAST SHEAP W ENT ENT :095E-n2 .9537487E+00	 G			.2482092E+03	.2049975E+03	.1693088E+03	.1538668E+03	27079E+0	*1154891E+03	.9538320E+02	. 8468367E+02	.7877759E+02	.6506292E+02	.5912878E+02	-488348E+02	. 44 340 ADE + 02	4033300E+02	.3954278E+02	.3915349E+02	3838638E+02	.3R00848F+02	.3763430E+02	37763H0E+02	3453371E+02	3417404E+02	.3581792E+02	.3546531E+02	+3511616E+0Z	20+40407746.	.3408921E+02
R.G.L. MOTTO UT 1052095E-	ENERGY FLUX	0. .2019874408 .20134874608 .5402744608 .540274608	.7624486E+03	.7398414£-08 .1521177£-64	.1521177E_04	.28126.50E-04	. 3629245E-04	*4287707F=04	42252075	4012775754	.4970565F -04	497055E-04	4164612	53038416	- 15 to 0 to 10 to	5410964	401150404144 40140404144	.5574715E-04	.55297146-04	-5547H016-04	.557045At-04	.5570456E_04	.55992646=04 64883446=04	-56 35744E-04	-5635744F=04	.5682744t=04	. 554274KE-04	40-3041146	40-112414 40-112414	-5808894E=04
	TOER	0. 2459025E+01 342055E+01 3039337E+01 25053975E+01 2049203E+01	F DIRECT WAVE P #	.15693REE+11 .113R2A7E+01	.7669901E+00	.2194434E+00	. 4533097E-01	1.39488346.1	501643F-01	10-1506365.	.5588741E+00	. 9987392E+U0	. 4464718E+01	. 3670633E+01	. 120 100 E + 01	. 13004/46+02	5.4343434+03 44340016+03	. 4261258E+02	. 1663349E+02	20 - 3621 6595	. 3152452F+U2	. 2823241E+02	. n43/415E+02	7HJ9704F+02	.4617758E+02	. 4362142F + 02	.1011125F+03	.10770411 + 0.3	11400101011	1109244403
	PEDUCEN TI"E T	.9463454F.00 .9884496F.00 .9905437E.00 .9926474F.00 .9987453F.00	ARGIVAL OF	.1001-175E+01	.10052836+01	1009165001	.1011c96F-01	.1015 104E+01	.1017404E+01	*102217E+01	10-315-001.	102432461.	10304335+01	_	10347471	.1038059E+01	.1041.54E.01	1043444	10417078+01	10421435+01	-104216-F-01	. 1042:79F+11	*1042794E+01	10432316.01	10434436	e1043466E+01	. 104308461.	.1044107F+01	10445149114	10+4524401

NOT REPRODUCIBLE

++700+9E-02 +512133E-02 +512133E-02 +5370+3E-02 +5370+3E-02 +551537E-02 +551537E-02 +536133E-02 +536133E-02 +536133E-02 +536133E-02 +536138E-02

. \$5280.26E.02 . \$5280.26E.02 . \$526472E.02 . \$526472E.02 . \$55058E.02 . \$55058E.02	**************************************	**************************************	. 6396415E-02 . 6396417E-02 . 6625493E-02 . 6625793E-02 . 6663997E-02 . 6863997E-02 . 7071171E-02	7211265E-02 7467889E-02 746788E-02 7544258E-02 7544258E-02 7651194E-02 7767153E-02
-1527909E+02 -1527909E+02 -8739761E+01 -4437140E+02 -6570371E+02	.8951180E+02 .964265EE+02 .1068843E+03 .110675E+03 .1133955E+03 .1157840E+03 .1157840E+03 .11578E+03 .11578E+03	1226435E+03 1232005E+03 1232005E+03 1204023E+03 115717E+03 1036425E+03 1036425E+03	. 491305555 . 49497255 . 74409725 . 64617455 . 646313455 . 64931345 . 6464406 . 5545402 . 5545402 . 5545902 . 646402	**************************************
.3848326E-04 .385366BE-04 .3869895E-04 .3912438E-04 .3912438E-04	.34751 72E - 0.4	.4140246E-04 .4211605E-04 .4553515E-04 .4753515E-04 .47545666-04 .4754566-04 .5065466-04	. 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7117841E-04 7288796E-04 7430706E-04 7801662E-04 7972617E-04 8143517E-04 8314527E-04
.31273096.02 .301 H2746.02 .29913346.02 .29557#76.02 .2985956.02	24851000000000000000000000000000000000000	.2500256502 .2547542602 .2547542602 .204053602 .1954551602 .1531521602	.12648450 .1149527E.02 .104463E.00 .9494114E.01 .842412E.01 .7124004E.01 .5486242E.01	**************************************
. 59346444 . 34 . 59346446 . 34 . 59346446 . 34 . 59429446 . 34 . 59429446 . 34 . 59429446 . 34	6094204 6000404 6000404 6000404 6009404 6009409 600940 600940 600940 600940 600940	6.000146.3E=0.0+ 6.00047.34E=0.4+ 6.00049E=0.4+ 6.700299E=0.4+ 7.1005.30E=0.4+ 7.1005.30E=0.4+ 7.1005.30E=0.4+	. 7705043E=04 . 7705043E=04 . 7899123E=04 . 7899123E=04 . 8044446E=04 . 8157954E=04 . 8157954E=04	######################################
259070EE 33 1007562E 03 2117358F 06 117358F 06 1187358F 06 118756 06	. 4564506 . 44645066 . 44645066 . 44645066 . 4464666 . 446666 . 446666 . 4466666 . 4466666 . 44666666 . 446666666 . 446666666666	. 4775/4 + 62 . 426/4/26 + 62 . 101/6/3/9/76 + 03 . 471/6/3/9/76 + 03 . 471/6/3/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9	. A 10 TE A 10	**************************************
1047.476.01 1047.4376.01 1047.4316.01 1047.4476.01 1047.447.601	1050767601 1050767601 1050767601 1050767601 1050767601 1050767601	- 1051 a 7 kg = 01 - 1051 a 3 p F = 01 - 1056 a 4 F = 01 - 1056 a 1 F = 01 - 1066 0 3 kg = 01 - 1066 0 3 kg = 01 - 1066 3 5 kg = 01	1005.55 E 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1087410E-01 1084910E-01 1084922E-01 1086326E-01 108436E-01

.9512423E+00

.3084447E+00

.5582754E+00

.3133967E.00

-.1050868E.0I

.1167134E.01

TABLE B.3 OUTPUT FOR A PLANE WAVE BOTTOM REFLECTION

DATE 06/29/71 HOTTOM REFLECTION

17/62/40	BIGHE .26042000E+01 DE .14350000E+01 DGAUE .2490000E+01	DE 0.1437065EE.01 SMALLPE 2.3958000E.01 WCHE 1.250000E.04 CWATER 0.4879342E.01 CWATER 0.4870300E.04 CSHTER 0.9980000E.04 CSHTER 0.99800000E.04 CSHTER 0.99800000E.01 PRECOE 0.11300000E.01 THEOCE 0.2500000E.01 THECCE 0.2500000E.01 THETAE 0.2703430E.01 THETAE 0.2708430E.01 THETAE 0.2708430E.01 THETAE 0.2708430E.01 THETAE 0.2708430E.01	IL 4IO	
DATE	# 22 SI	N7.LE.0.)	COSTH	-
RUN NUMBER 3	SO THAT ARRIVAL TIME OF GROUNDWAVE IS	IN FT CCONOS CCONOS THETA INGLE R INCH OF GRAPH) REE WANTEO) BROUTINE PTV IF APRI FERISTIC LENGTH IN RESSURE IN PSI RESSURE IN PSI FERISTIC LENGTH IN RESSURE IN PSI SECONDS S OF THE CALCULATION	COSAL	
Ľ	GED SO THAT ARRIV	TOTARGE AND GAUGE IN LH (OR KT) IN FT/SEC 1 IN FT/SEC 1 IN FT/SEC 1 IN FT/SEC 1 IN FT/SEC 1 IN FT/SEC 1 IN FT/SEC 1 IN MULTIPLES 1 IN MULTIPLES 2 INCH OR SI 2 INCH OR SI 3 INCH OR SI 3 INCH OR SI 4 IN MULTIPLES 5 INCH OR SI 5 IN MICROSECONOS 5 IN MICROSECONOS 6 IN MICROSECONOS 6 IN MICROSECONOS 7 IN MICROSECONOS 7 IN MICROSECONOS 8 IN MICROSECONOS 8 IN MICROSECONOS 9 IN MICROSECONOS 9 IN MICROSECHA 1 IN DEGREES 1 IN MICROSECONOS 1 IN DEGREES 1 IN MICROSECHA 1 IN DEGREES 1 IN MICROSECHA 1 IN DEGREES 1 IN MICROSECHA 1 IN MICROSECHA 1 IN SECONOS 1 IN MICROSECHA 1 IN MICROSECHA 1 IN MICROSECHA 1 IN SECONOS 1 IN MICROSECHA 1 I	05	
	WATER IN FT EXPLOSION IN FT GAUGE IN FT GEOMETRY CHANGED	DEPTH OF EXPLOSION IN FT DEPTH OF GAUGE IN FT WEIGHT OF GAUGE IN FT WEIGHT OF GAUGE IN FT WEIGHT OF GAUGE WEIGHT OF SOUND IN WATER IN FT/SEC VELOCITY OF SOUND IN WATER IN FT/SEC DENITY OF SOUND IN WATER IN FT/SEC COEFICIENT OF SHARWAYF IN FT/SEC COEFICIENT OF SW PRESSURE FORMULA IN PSI EXPONENT OF SW PRESSURE FORMULA IN SECONOS ENSITY OF SW TIME CONSTANT FORMULA IN SECONOS EXPONENT OF SW PRESSURE FORMULA IN SECONOS EXPONENT OF SW TIME CONSTANT FORMULA NUMBER OF SUBJIVISIONS OF THETA BURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA DURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA EXPONENT OF SW TIME CONSTANT FORMULA NUMBER OF SUBJIVISIONS OF THETA BURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA DURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA EXPONENT OF SW TIME CONSTANT FORMULA NUMBER OF SUBJIVISIONS OF THE TA BURATION AFTER DIRECT ARRIVAL IN MULTIPLES OF THETA CONTROL PARAMETER (23 = 0. MEANS PLOTS ARE MANTEO) ENDITED THAT SELECTS THEOPY PRINT CONTROL PARAMETER (23 = 0. MEANS PLOTS ARE PRINT CONTROL PARAMETER (23 = 0. MEANS PLOTS ENDITED THAT OF STONLEY WAVE IN MOGREES ANGLE OF PRESSURE WAVE IN BOTTOM IN DEGREES ANGLE OF PRESSURE WAVE IN BOTTOM REFLECTED ENDITED THAT OF STONLEY WAVE IN BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT OF PREAK OF BOTTOM REFLECTED ENDITED THAT	DEZERO	
	06PTH OF DEPTH OF DEPTH OF	MEDETH OF MEDETH OF MEDETH OF MEDETION VELOCITY	SMALLH	

	10N
• • •	
•	
•	
•	
	*
.2292158E+03	-
.2081269E+0	NF
1715	0
. 558	Õ
.1526255E+03	NC
.1470	3
.1442	N
.1414694E+03	0 0
	-
.1342949E+03	o i
.1292090E+03	o L
.1267388E+0	m :
.1219391E+0	• 60
.1196079E+03	0
•1086034E+0	o.
8953	4 60
.8130067E+02	ō
.6702879E+0	5 00
.6086	-
.5526225E+02	N
.5017	- 3
4220	٠.
34136941E+02	
3410	
3006	0
.2811	Ó
.2553	N
.2318361E+02	•
777	ě s

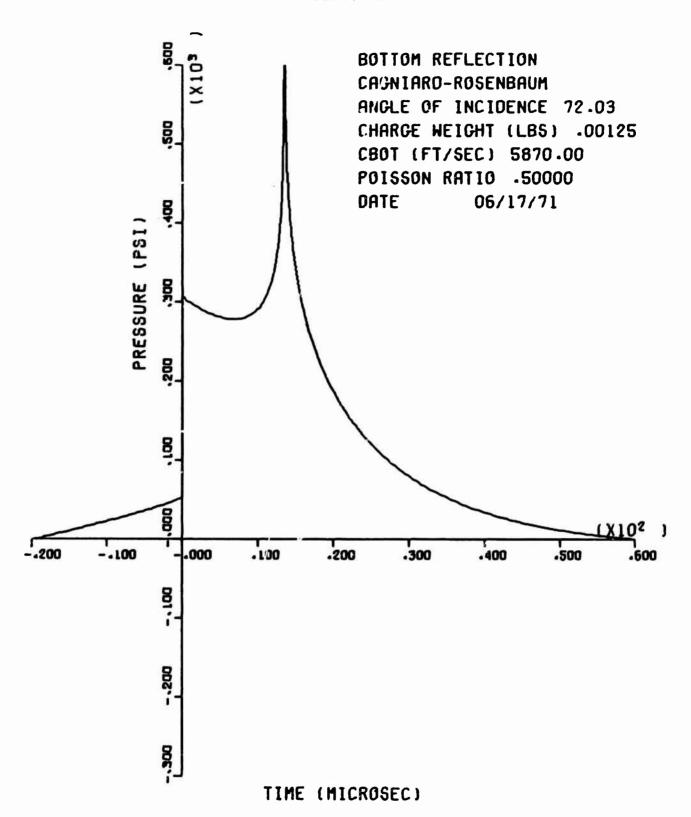


FIG. 2 SAMPLE CALCOMP PLOT OF PRESSURE-TIME HISTORY

APPENDIX C

TWO SPECIAL INPUT OPTIONS

Two special input options for altering the input geometry are provided in the code BOTREF using the variables THOVAL and Z2. The first option allows the programmer to specify an incident angle θ which is expressed as the ratio of the incident angle θ to the critical angle $\theta_{\rm Cr}$. This is accomplished by setting THOVAL = $\theta/\theta_{\rm Cr}>0$. If THOVAL ≤ 0 , this option is ignored. The programmer also must supply the water depth H, the horizontal range r, and the gauge depth $d_{\rm g}$. If possible, the code calculates the required charge depth d keeping $d_{\rm g}$ fixed. Otherwise, d is set to H, and a new value of $d_{\rm g}$ is determined. Thus this option permits the user to calculate bottom reflections for a range of incident angles without first having to determine the exact geometry that is required.

The second option using Z2 > 0 provides an alternative means of specifying the reflection geometry. The arrival time Z2 (in microseconds) of the bottom reflected wave after the direct wave is exceedingly sensitive to the geometry which often cannot be measured with the necessary accuracy. This time, which can be accurately measured, provides the means which can be used to correct the input geometry. The geometry is changed by altering d and d_g and holding r fixed so that the incident angle θ and the bottom reflected slant range R_r are unchanged. Typically, the direct and reflected pulses are only slightly altered, but the change in their sum may be significant.